首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, we prepared short‐carbon‐fiber (CF)‐reinforced poly(lactic acid) (PLA)–thermoplastic polyurethane (TPU) blends by melt blending. The effects of the initial fiber length and content on the morphologies and thermal, rheological, and mechanical properties of the composites were systematically investigated. We found that the mechanical properties of the composites were almost unaffected by the fiber initial length. However, with increasing fiber content, the stiffness and toughness values of the blends were both enhanced because of the formation of a TPU‐mediated CF network. With the incorporation of 20 wt % CFs into the PLA–TPU blends, the tensile strength was increased by 70.7%, the flexural modulus was increased by 184%, and the impact strength was increased by 50.4%. Compared with that of the neat PLA, the impact strength of the CF‐reinforced composites increased up to 1.92 times. For the performance in three‐dimensional printing, excellent mechanical properties and a good‐quality appearance were simultaneously obtained when we printed the composites with a thin layer thickness. Our results provide insight into the relationship among the CFs, phase structure, and performance, as we achieved a good stiffness–toughness balance in the PLA–TPU–CF ternary composites. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46483.  相似文献   

2.
Composites of thermoplastic polyurethane (TPU) with poly(diphenylamine) (PDPA) were prepared by entrapping diphenylamine (DPA) molecules into the matrix of TPU and polymerizing DPA within the TPU matrix. Swelling rate of the parent TPU and the composites in 1M LiClO4 in propylene carbonate solution were compared to understand the influence of the presence of PDPA in the composite in altering the morphology, conductivity, and electrolyte behavior. The nitrogen atoms in the PDPA interact and are likely to form hydrogen bonding with the carbonyl and ether groups in TPU. As a result, different morphology, thermal, and impedance behavior were witnessed for the composites in comparison to TPU. Results from differential scanning calorimetry, scanning electron microscopy (SEM), thermogravimetric analysis, and ac impedance measurements were obtained as supporting evidences. An increase in glass transition temperature for the composite in comparison to TPU infers the increase in phase mixing of soft and hard segment of TPU. The SEM micrograph shows the presence of fibrillar morphology of PDPA molecules in the composite. The ionic conductivity of the swelled composite was 1‐fold higher than that of pure TPU. A schematic representation showing the interaction of PDPA molecules with TPU is presented. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 611–617, 2006  相似文献   

3.
The melt rheological analysis of high‐density polyethylene reinforced with vapor‐grown carbon nanofibers (VGCNFs) was performed on an oscillatory rheometer. The influence of frequency, temperature, and nanofiber concentration (up to 30 wt %) on the rheological properties of composites was investigated. Specifically, the viscosity increase is accompanied by an increase in the elastic melt properties, represented by the storage modulus G′, which is much higher than the increase in the loss modulus G″. The composites and pure PE exhibit a typical shear thinning behavior as complex viscosity decreases rapidly with the increase of shearing frequency. The shear thinning behavior is much more pronounced for the composites with high fiber concentration. The rheological threshold value for this system was found to be around 10 wt % of VGCNF. The damping factor was reduced significantly by the inclusion of nanofibers into the matrix. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 155–162, 2004  相似文献   

4.
Carbon nanotubes (CNTs) and barium titanate (BaTiO3) (BT) were simultaneously introduced into the immiscible blend poly(ethylene‐co‐vinyl acetate)/thermoplastic urethane (EVA/TPU), and the EVA/TPU/CNT/BT quaternary polymer composite blends with core–shell structured island TPU domain were successfully prepared, in which CNTs in the TPU domain act as the core and the BT spheres at the interface of the TPU and EVA act as the shell. A core–shell structured island can lead to the formation of micro‐capacitors and further accumulate electron storage owing to the incorporation of CNTs and BT; on the other hand, a BT shell can be assembled along the TPU spheres, reducing the possibility of formation of a conductive CNT network, resulting in suppressed dielectric loss. Therefore, CNTs and BT were tailor‐made into blend composites with a core–shell structured domain, which can achieve an increased dielectric constant by 176% and decreased low dielectric loss by 80% compared with the blend composites with only CNTs in the TPU domain. © 2019 Society of Chemical Industry  相似文献   

5.
Glass fiber reinforced polymeric (GFRP) composites are being accepted as potential materials for ultra‐low temperature applications. The current investigation is to evaluate effect of liquid nitrogen (LN2) conditioning (for different intervals of time) on the loading rate sensitivity of tensile response of GFRP composites. In order to assess this, tensile tests of the unconditioned and conditioned specimens were carried out at different crosshead speeds viz. 1, 10, 100, 500, and 1000 mm/min. At 1 mm/min crosshead speed, an improvement of 3.33% and 7.3% ultimate tensile strength (UTS) value was observed in case of 0.25 and 1 h conditioned GFRP composites, respectively, as compared to unconditioned GFRP composites. Similarly, the specimens tested at 1000 mm/min show an improvement of 11.39% and 12.02% UTS for 0.25 and 1 h LN2 conditioned GFRP composites, respectively, as compared to unconditioned GFRP composites. Effect of LN2 conditioning on crosshead speed sensitivity of modulus and strain at break are also reported. The in‐service temperature of the GFRP composite was measured using temperature modulated differential scanning calorimetry. Furthermore, dynamic mechanical thermal analyzer was used in the temperature range (40–200 °C) to correlate the mechanical and thermomechanical response of the GFRP composites. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45856.  相似文献   

6.
Carbon fiber reinforced poly(urethane‐isocyanurate)‐nanosilica composites CF‐(PUI‐NS) were manufactured by means of the vacuum‐assisted resin transfer moulding technique (VARTM) at very low NS concentrations (0–4 wt%). The high strain to failure of the PUI matrix (>7%) affected tensile tests by CF reorientation. Both the tensile strength and strain to failure were highly dependent on its kinematics. CF(PUI‐NS) caused an increase of the static toughness with a maximum improvement of tensile strain to failure and modulus of +28.8% and +39% at 1 wt% and 2 wt% of NS, respectively. The interlaminar shear strength (GIC) of the composites showed both a deterioration of ?12.9% and an improvement of +9.9% for NS concentrations of 1 wt% and 4 wt%, respectively. Regardless of the GIC value, all of the composites prepared with NS presented secondary maxima of the force versus displacement plots, indicating a substantial arrest of the crack propagation velocity after delamination started. Fractographic analysis revealed several features, such as fiber pull‐out, bridging as well as river patterns whereas the composites prepared with NS behaved in a more ductile fashion due to the presence of river patterns and a reduced fiber pull‐out. POLYM. ENG. SCI., 58:1241–1250, 2018. © 2017 Society of Plastics Engineers  相似文献   

7.
The effects of wood flour content (60–80%) and m-TMI-g-PP content (0–14%) on the properties of wood flour/polypropylene composites (WF/PP) were investigated by means of mechanical properties, thermal analysis, dynamic rheological analysis, and scanning electron microscopy (SEM). The results demonstrated that WF significantly increased the mechanical properties, char yield, heat deflection temperature (HDT), vicat softening temperature (VST), T c, G′, G″, and η ?. However, WF above 70% led to decreased mechanical properties, so for the comprehensive consideration of the cost and environmental issues, 70% WF is the best. With the addition of m-TMI-g-PP, the mechanical properties, thermal stability, HDT, VST, △H m, and T m of composites were all got improvement, which was attributed to the strong interfacial interaction of m-TMI-g-PP on composites. However, when it exceeded 10%, the mechanical properties of the composites declined, it probably formed a separate phase in the PP matrix. Therefore, the 10% m-TMI-g-PP was chosen in WF/PP. In addition, the results were all further confirmed by SEM analysis.  相似文献   

8.
An interesting correlation between initial loading and nature of wrapping of regioregular poly(3‐hexylthiophene) (rrP3HT) on multiwalled carbon nanotube and their combined effect on dynamic‐ and thermomechanical properties in ternary system (thermoplastic polyurethane as matrix) is highlighted. Wrapping of rrP3HT on carbon nanotube (CNT) makes the hexyl side chains thermally nonequivalent and composites more stable. Dynamic‐ and thermomechanical analysis ascertained the miscibility (single Tg = ?40°C), large mechanical reinforcement, and improved storage modulus of nanocomposites in the presence of CNT compared to its blends. Two breaks at ~ ?100 and ~ ?40°C for TPU‐P3HT composites (PHs) and TPU‐P3HT‐MWCNT composites (PHCs) in the loss modulus vs. temperature plot indicates two different types of transitions in P3HT chains. Dimensional stability by expansion probe technique measures low coefficient of thermal expansion of PHCs compared to its blends. Softening property by penetration probe technique suggests that 2.5 wt % loading of P3HT exhibits lowest degree of penetration compared to other nanocomposites. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

9.
A novel hybrid containing graphene oxide (GO) and montmorillonite (MMT) was first synthesized by solution reaction. Then shape memory thermoplastic polyurethane (TPU) composites incorporating MMT–GO hybrid was fabricated via melt blending. Infrared spectra indicated that GO and MMT have been combined together through chemical hydrogen bonding. Tensile tests showed that MMT‐GO hybrids provided substantially greater mechanical property enhancement than using MMT or GO as filler alone. With only 0.25 wt % loading of MMT–GO hybrid (the mass ratio of MMT:GO is 1:1), there was a relatively high improvement in tensile properties of TPU composites, compared with those of TPU/GO and TPU/MMT composites at the same filler content. Thermal analysis indicated that MMT‐GO hybrids enhanced the thermal decomposition temperatures of TPU composites. Shape memory property tests showed that the shape fixing rate of TPU composites was effectively enhanced by incorporating MMT–GO hybrid. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46149.  相似文献   

10.
Flexible pressure sensors have potential applications in human motion monitoring and electronic skins. To satisfy the practical applications, pressure sensors with a high sensitivity, a low detection limit, a broad response range, and an excellent stability are highly needed. Here, a piezoresistive pressure sensor based on wavy‐structured single‐walled carbon nanotube/graphite flake/thermoplastic polyurethane (SWCNT/GF/TPU) composite film is fabricated by a prestretching process. Due to the random wavy structure, high conductivity, and good flexibility, the prepared sensor displays a low detection limit of 2 Pa, a wide sensing range of 0–60 kPa, and a high sensitivity of 5.49 kPa?1 for 0–50 Pa. Furthermore, the sensor shows a remarkable repeatability of over 1.1 × 104, 9.0 × 103, and 2.0 × 103 pressure loading/unloading cycles at 50 Pa, 500 Pa, and 30 kPa, respectively, and a fast responsibility of 100–150 ms of loading response time and 400–600 ms of relaxation time. Therefore, the pressure sensor is successfully adopted to monitor both the large‐scale human activities (e.g., walk and jump) and the small‐scale signals (e.g., wrist pulse). Furthermore, a sensor array is assembled to map the weight and shape of an object, indicating its various potential applications including human–machine interactions, human health monitoring, and other wearable electronics.  相似文献   

11.
The mechanical and dynamic mechanical properties of thermoplastic polyurethane (TPU) elastomers reinforced with two types of aramid short fibers, m‐aramid (Teijin‐Conex) and copoly(p‐aramid) (Technora), were investigated in this study with respect to the fiber loading. In general, both types of composites exhibited very similar stress–strain behaviors, except that Technora–TPU was stronger than Conex–TPU. This was primarily due to the intrinsic strength of the reinforcing fibers. Both types of fibers reinforced TPU effectively without any surface treatment. This could be attributed to good fiber–matrix interactions, which were revealed by the broadening of the tan δ peak in dynamic mechanical analysis. Furthermore, the morphologies of cryogenically fractured surfaces of the composites and extracted fibers, investigated with scanning electron microscopy, revealed possible polar–polar interactions between the aramid fibers and TPU matrices. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 1059–1067, 2003  相似文献   

12.
A series of poly(methyl methacrylate) (PMMA) blends with rigid ladderlike polyphenylsilsesquioxane (PPSQ) were prepared at weight ratios of 100/0, 95/5, 90/10, 85/15, and 80/20 by solution casting and then hot‐pressing. Their rheological properties have been studied under both dynamic shear and uniaxial elongation conditions. Their rheological properties depend on the compositions. The storage modulus, G′, loss modulus, G″, and dynamic shear viscosity, η*, of the PMMA/PPSQ 95/5 blend were slightly lower than those of pure PMMA. However, the values of G′, G″, and η* for the other PMMA/PPSQ blends are higher than those of PMMA. The G′ values increase with an increase in PPSQ content from 5% through 15% PPSQ at low frequencies and then drop as the PPSQ content increases to 20%. Uniaxial elongational viscosity (ηE) data demonstrate that PMMA/PPSQ blends exhibit slightly weaker (5% PPSQ) and much weaker (10% PPSQ) strain‐hardening than PMMA. In contrast, the PMMA/PPSQ 85/15 blend shows strain‐softening. Neither strain‐hardening nor strain‐softening was observed in the 80/20 blend. The special rheological properties for the 95/5 blend is probably due to a decrease in PMMA entanglements brought by the specific PMMA–PPSQ interactions. Rheological properties of PMMA/PPSQ blends with higher PPSQ content (≥10%) are mainly affected by formation of hard PPSQ particles. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 352–359, 2007  相似文献   

13.
ABSTRACT

Flexible conductive polymer composites with good mechanical property play an important role in the modern electronic industry. In this study, aromatic poly(amide-imide) (PAI) and thermoplastic polyurethane (TPU), functionalized multi-wall carbon nanotube (FMWCNT) and reduced graphene oxide (RGO), were, respectively, used as polymer matrix and conductive filler to fabricate conductive polymer composites. Combing the advantages of PAI (high strength) and TPU (good elasticity), PAI-TPU/FMWCNT-RGO polymer composites exhibited a high tensile strength of 58.8 MPa and good elongation at break of 255%. On the other hand, the hybrid conductive filler of FMWCNT-RGO possessed a 3D structure, which is beneficial for improving conductive property, and thus a relative high conductivity of 35.9 S m?1 was achieved. The enhanced mechanical and conductive properties are mainly ascribed from the good compatibility between the polymer matrix and conductive fillers, which promotes the good dispersion of conductive filler into the polymer matrixes.  相似文献   

14.
Flexible poly(vinyl chloride)/varistor composites were fabricated by solution casting method. High‐field ZnO varistor particles processed from micron‐sized Zn dust is explored as multifunctional filler for PVC composites. Mechanical blending of Zn dust with La2O3‐CeO2 rare earths and varistor forming minor additives followed by sintering at 1250 °C resulted in fine‐grained ZnO varistors. Bulk varistor was subsequently milled to obtain ZnO microvaristor grains. The effect of microvaristor on the UV stability, dielectric, and mechanical properties of the PVC composite was analyzed. The varistor filler in PVC enhanced the microhardness and retained the tensile properties without any significant loss. After UV irradiation PVC/varistor composite shows remarkable mechanical stability retention (95%) compared to pure PVC (75%). Also, microvaristor reinforcement resulted in dielectric constant tunability (? = 2–37) without any drastic change in the dielectric loss (0.02–0.05). Thus, Zn dust‐derived ZnO varistors could be potentially exploited to design functional PVC composites for electronic applications. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46031.  相似文献   

15.
Electrically conducting rubbery composites based on thermoplastic polyurethane (TPU) and carbon nanotubes (CNTs) were prepared through melt blending using a torque rheometer equipped with a mixing chamber. The electrical conductivity, morphology, rheological properties and electromagnetic interference shielding effectiveness (EMI SE) of the TPU/CNT composites were evaluated and also compared with those of carbon black (CB)‐filled TPU composites prepared under the same processing conditions. For both polymer systems, the insulator–conductor transition was very sharp and the electrical percolation threshold at room temperature was at CNT and CB contents of about 1.0 and 1.7 wt%, respectively. The EMI SE over the X‐band frequency range (8–12 GHz) for TPU/CNT and TPU/CB composites was investigated as a function of filler content. EMI SE and electrical conductivity increased with increasing amount of conductive filler, due to the formation of conductive pathways in the TPU matrix. TPU/CNT composites displayed higher electrical conductivity and EMI SE than TPU/CB composites with similar conductive filler content. EMI SE values found for TPU/CNT and TPU/CB composites containing 10 and 15 wt% conductive fillers, respectively, were in the range ?22 to ?20 dB, indicating that these composites are promising candidates for shielding applications. © 2013 Society of Chemical Industry  相似文献   

16.
A series of novel soluble and thermoplastic polyurethane/polyaniline (TPU/PANI) composites doped with a compound acid, which was composed of an organic acid (p‐toluene sulfonic acid) and an inorganic acid (phosphoric acid), were successfully prepared by in situ polymerization. The effect of aniline (ANI) content, ratio of organic acid/inorganic acid, and different preparation methods on the conductivity of the TPU/PANI composites were investigated by using conductivity measurement. Lithium bisoxalato borate (LiBOB) was added to the prepared in situ TPU/PANI to coordinate with the ether oxygen groups originating from the soft molecular chains of TPU, and thus the conductivity of the composites was further enhanced. The molecular structure, thermal properties, and morphology of the TPU/PANI composites were studied by UV–visible spectroscopy, differential scanning calorimetry, and scanning electron microscopy, respectively. The results show that the in situ TPU/PANI composites doped with the compound acid can be easily dissolved in normal solvents such as dimethylformamide (DMF) and 1,4‐dioxane. The conductivity of the TPU/PANI composites increases with the increase of the ANI content, in the ANI content range of 0–20 wt %; however, the conductivity of the composites reduces with further increment of ANI content. The conductivity of the TPU/PANI composites prepared by in situ polymerization is about two orders of magnitude higher than that prepared by solution blending method. LiBOB can endow the in situ TPU/PANI composites with an ionic conductivity. The dependence of the conductivity on temperature is in good accordance with the Arrhenius equation in the temperature range of 20–80°C. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

17.
Poly(butylene succinate) (PBS)/pristine raw multiwalled carbon nanotube (MWCNT) composites were prepared in this work via simple melt compounding. Morphological observations indicated that the MWCNTs were well dispersed in the PBS matrix. Moreover, the incorporation of MWCNTs did not affect the crystal form of PBS as measured by wide‐angle X‐ray diffraction. The rheology, crystallization behaviors, and thermal stabilities of PBS/MWCNT composites were studied in detail. Compared with neat PBS, the incorporation of MWCNTs into the matrix led to higher complex viscosities (|η*|), storage modulus (G′), loss modulus (G″), shear thinning behaviors, and lower damping factor (tan δ) at low frequency range, and shifted the PBS/MWCNT composites from liquid‐like to solid‐like, which affected the crystallization behaviors and thermal stabilities of PBS. The presence of a very small quantity of MWCNTs had a significant heterogeneous‐nucleation effect on the crystallization of PBS, resulting in the enhancement of crystallization temperature, i.e., with the addition of 0.5 wt % MWCNTs, the values of Tc of PBS/MWCNT composites could attain to 90°C, about 6°C higher than that of neat PBS, whereas the values of Tc increased slightly with further increasing the MWCNTs content. The thermogravimetric analysis illustrated that the thermal stability of PBS was improved with the addition of MWCNTs compared with that of neat PBS. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

18.
The polyurethane composites with conducting carbon black (CB) were prepared by a solution‐precipitation process, which was followed by melt compression molding. The polyurethane used has good shape memory effect. The morphology of CB fillers in polyurethane matrix and the resulting conductivity of the composites were investigated. It has been found that CB fillers exist in the forms of aggregates. The percolation threshold is achieved at the CB concentration of 20 wt %. The presence of CB fillers decreases the degree of crystallinity of polycaprolactone (PCL) soft segments of the polyurethane. However, the composites still have enough soft‐segment crystals of polyurethane to fulfil the necessary condition for the shape memory properties. Dynamic mechanical data show that CB is an effective filler for the reinforcement of the polyurethane matrix, but does not deteriorate the stable physical cross‐link structure of the polyurethane, which is necessary to store the elastic energy in the service process of the shape memory materials. Addition of CB reinforcement in the polyurethane has influenced the strain recovery properties, especially for those samples with CB concentrations above the percolation threshold. The response temperature of the shape memory effect Tr has not been affected too much. Strain fixation Sf, which expresses the ability of the specimens to fix their strain, has been improved in the presence of the CB fillers. The final recovery rates Rf and strain recovery speeds Vr of the shape memory measurements, however, have decreased evidently. It is expectedly ascribed to the increased bulk viscosity as well as the impeding effect of the inter‐connective structure of CB fillers in the polymer matrix. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 75: 68–77, 2000  相似文献   

19.
Highly efficient electrical conductive networks were constructed in carbon‐black (CB)‐filled polyoxymethylene (POM)–thermoplastic polyurethane (TPU)–polyamide 6 (PA6) ternary blends through the formation of a hierarchical structure composed of a minor PA6 phase as droplets inside one major phase (TPU) and CB particles localized at the TPU–PA6 interface by thermodynamically induced self‐assembly. The hierarchical structure was thermodynamically predicted on the basis of the minimization of total interfacial energies and confirmed by electron microscopy. The degrees of the TPU phase continuity before and after the addition of PA6 were determined by solvent‐extraction experiments. The percolation threshold of CB decreased by 50% compared to that in the POM–TPU binary blend because of the more efficient formation of a CB conductive network through CB‐covered PA6 domains inside the TPU phase. The hierarchical structure not only increased the electrical conductivity of the composites but also improved their thermal stability in comparison with the simple structure formed by the homogeneously dispersed CB particles in POM. The method reported in this article can offer possibilities for improving the comprehensive properties of the conductive composites and the widening of their applications. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45877.  相似文献   

20.
CO2 copolymer diol‐based thermal polyurethane elastomers (PPC‐TPU) were prepared by the reaction of CO2 copolymer diol and methylene diphenyl diisocyanate and chain extender (ethylene glycol/1,4‐butanediol/1,6‐hexanediol) (EG/BDO/HG). The rheological and mechanical properties of PPC‐TPU were analyzed. The effects of shear rate, shear temperature, hard segment content, and variety of chain extender on the properties of PPC‐TPU were studied. The results showed that the apparent viscosity (η) of PPC‐TPU decreased with the increasing shear rate (τ), and the non‐Newtonian index (n) was less than 1. PPC‐TPU exhibited a typical character of pseudoplastic non‐Newtonian rheological behavior. The degradation during the processing was obviously inhibited by adding plasticizer and antioxidant. It was also discovered that the apparent viscosity varied with the content of hard segment and chain extender. Under the same temperature (185 °C) and shear rate (50 s?1), the apparent viscosity increased considerably with the raise of hard segment content, and the apparent viscosity and tensile strength of PPC‐TPU with EG as chain extender was the maximum. It can be seen that with the apparent shear rate increasing, the variation tendency of apparent shear stress levels off, and the nonlinear relationship of τγ curve tended to be obvious. PPC‐TPU exhibited a typical character of pseudoplastic non‐Newtonian rheological behavior. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45974.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号