首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: This investigation evaluates the effectiveness of initiator adducts for living and controlled polymerization of methacrylates, crosslinking of dimethacrylates and thermal stabilities of the resulting polymers. Adducts of 2,2,6,6‐tetramethyl‐1‐piperidinyloxy with benzoyl peroxide and with azobisisobutyronitrile were prepared and evaluated as stabilized unimolecular initiators for the free radical polymerization of methacrylate monomers using sulfuric acid as catalyst. The monomers used were methyl methacrylate, triethylene glycol dimethacrylate (TEGDMA) and ethoxylated bisphenol A dimethacrylate (EBPADMA). RESULTS: Successful polymerization was achieved at 70 and 130 °C with reaction times ranging from 45 min to 120 h. The dispersity (D) of poly(methyl methacrylate) (PMMA) was 1.09–1.28. The livingness and extent of control over polymerization were confirmed with plots of Mn evolution as a function of monomer conversion and of the first‐order kinetics. The glass transition temperature (Tg) for PMMA was 123–128 °C. The degradation temperature (Td) for PMMA was 350–410 °C. Td for poly(TEGMA) was 250–310 °C and for poly(EBPADMA) was 320–390 °C. CONCLUSION: The initiators are suitable for free radical living and controlled polymerization of methacrylates and dimethacrylates under mild thermal and acid‐catalyzed conditions, yielding medium to high molecular weight polymers with low dispersity, high crosslinking and good thermal stability. Copyright © 2008 Society of Chemical Industry  相似文献   

2.
We have prepared a series of poly(methyl methacrylate) (PMMA)‐based copolymers through free radical copolymerization of methyl methacrylate in the presence of 2‐ureido‐4[1H]‐pyrimidinone methyl methacrylate (UPyMA). The glass transition temperature was increased with the increase of UPyMA contents in PMMA copolymers due to strong self‐complementary multiple hydrogen bonding interactions of UPy moiety. The Fourier transform infrared and solid‐state NMR spectroscopic analyses provided positive evidence for the presence of multiple hydrogen bonds interaction of UPy moiety. Furthermore, the proton spin‐lattice relaxation time in the rotating frame [T(H)] for the PMMA copolymers had a single value that was less than pure PMMA, indicating the smaller domain sizes in PMMA copolymers. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

3.
Two oxetane‐derived monomers 3‐(2‐cyanoethoxy)methyl‐ and 3‐(methoxy(triethylenoxy)) methyl‐3′‐methyloxetane were prepared from the reaction of 3‐methyl‐3′‐hydroxymethyloxetane with acrylonitrile and triethylene glycol monomethyl ether, respectively. Their homo‐ and copolyethers were synthesized with BF3· Et2O/1,4‐butanediol and trifluoromethane sulfonic acid as initiator through cationic ring‐opening polymerization. The structure of the polymers was characterized by FTIR and1H NMR. The ratio of two repeating units incorporated into the copolymers is well consistent with the feed ratio. Regarding glass transition temperature (Tg), the DSC data imply that the resulting copolymers have a lower Tg than pure poly(ethylene oxide). Moreover, the TGA measurements reveal that they possess in general a high heat decomposition temperature. The ion conductivity of a sample (P‐AN 20) is 1.07 × 10?5 S cm?1 at room temperature and 2.79 × 10?4 S cm?1 at 80 °C, thus presenting the potential to meet the practical requirement of lithium ion batteries for polymer electrolytes. Copyright © 2005 Society of Chemical Industry  相似文献   

4.
N‐cyclohexylmaleimide (CHMI) and styrene (St) were used to copolymerize with methyl methacrylate (MMA) to synthesize heat‐resistant poly(methyl methacrylate) (PMMA) by a solution copolymerization method and a suspension copolymerization method. Residual CHMI concentrations in the copolymers were analyzed by gas chromatography. Effects of styrene on residual CHMI concentration, glass transition temperature (Tg), molecular weight, and molecular weight distribution were studied. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 1335–1339, 1999  相似文献   

5.
This study investigated the chemical behavior of polymers bearing cycloaliphatic bornyl units along with the steric difference of the chiral (+)‐bornyl methacrylate [(+)‐BMA] and racemic (±)‐BMA, expressed in the physical properties of the copolymers and the resist characteristics. To do this, a series of copolymers containing (+)‐bornyl methacrylate [(+)‐BMA] and (±)‐BMA] units was synthesized. Comonomers of tert‐butyl methacrylate (TBMA), methyl methacrylate (MMA), and maleic anhydride (MA) were used. The thermogravimetric curves, glass‐transition temperature (Tg), and molecular weight (MW) of the copolymers were evaluated. Exposure characteristics of chemical‐amplified positive photoresists comprising various copolymers were investigated. It was found that copolymers bearing (±)‐BMA have higher Tg and better thermostability than those of copolymers containing (+)‐BMA units. The copolymers with (±)‐BMA units, however, revealed an inert photochemical behavior on the positive‐tone photoresist. The patterning properties of the positive photoresist, composed of copolymers bearing (+)‐BMA and (±)‐BMA, and the photoacid generator (PAG) were also investigated. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 3538–3544, 2001  相似文献   

6.
Poly(methyl methacrylate)‐block‐polyurethane‐block‐poly(methyl methacrylate) tri‐block copolymers have been synthesized successfully through atom transfer radical polymerization of methyl methacrylate using telechelic bromo‐terminated polyurethane/CuBr/N,N,N,N″,N″‐pentamethyldiethylenetriamine initiating system. As the time increases, the number‐average molecular weight increases linearly from 6400 to 37,000. This shows that the poly methyl methacrylate blocks were attached to polyurethane block. As the polymerization time increases, both conversion and molecular weight increased and the molecular weight increases linearly with increasing conversion. These results indicate that the formation of the tri‐block copolymers was through atom transfer radical polymerization mechanism. Proton nuclear magnetic resonance spectral results of the triblock copolymers show that the molar ratio between polyurethane and poly (methyl methacrylate) blocks is in the range of 1 : 16.3 to 1 : 449.4. Differential scanning calorimetry results show Tg of the soft segment at ?35°C and Tg of the hard segment at 75°C. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

7.
The paper describes the synthesis of block copolymers of methyl methacrylate (MMA) and N‐aryl itaconimides using atom‐transfer radical polymerization (ATRP) via a poly(methyl methacrylate)–Cl/CuBr/bipyridine initiating system or a reverse ATRP AIBN/FeCl3·6H2O/PPh3 initiating system. Poly(methyl methacrylate) (PMMA) macroinitiator, ie with a chlorine chain‐end (PMMA‐Cl), having a predetermined molecular weight (Mn = 1.27 × 104 g mol?1) and narrow polydispersity index (PDI = 1.29) was prepared using AIBN/FeCl3·6H2O/PPh3, which was then used to polymerize N‐aryl itaconimides. Increase in molecular weight with little effect on polydispersity was observed on polymerization of N‐aryl itaconimides using the PMMA‐Cl/CuBr/Bpy initiating system. Only oligomeric blocks of N‐aryl itaconimides could be incorporated in the PMMA backbone. High molecular weight copolymer with a narrow PDI (1.43) could be prepared using tosyl chloride (TsCl) as an initiator and CuBr/bipyridine as catalyst when a mixture of MMA and N‐(p‐chlorophenyl) itaconimide in the molar ratio of 0.83:0.17 was used. Thermal characterization was performed using differential scanning calorimetry (DSC) and dynamic thermogravimetry. DSC traces of the block copolymers showed two shifts in base‐line in some of the block copolymers; the first transition corresponds to the glass transition temperature of PMMA and second transition corresponds to the glass transition temperature of poly(N‐aryl itaconimides). A copolymer obtained by taking a mixture of monomers ie MMA:N‐(p‐chlorophenyl) itaconimide in the molar ratio of 0.83:0.17 showed a single glass transition temperature. Copyright © 2005 Society of Chemical Industry  相似文献   

8.
Isotactic polypropylene graft copolymers, isotactic[polypropylene‐graft‐poly(methyl methacrylate)] (i‐PP‐g‐PMMA) and isotactic[polypropylene‐graft‐polystyrene] (i‐PP‐g‐PS), were prepared by atom‐transfer radical polymerization (ATRP) using a 2‐bromopropionic ester macro‐initiator from functional polypropylene‐containing hydroxyl groups. This kind of functionalized propylene can be obtained by copolymerization of propylene and borane monomer using isospecific MgCl2‐supported TiCl4 as catalyst. Both the graft density and the molecular weights of i‐PP‐based graft copolymers were controlled by changing the hydroxyl group contents of functionalized polypropylene and the amount of monomer used in the grafting reaction. The effect of i‐PP‐g‐PS graft copolymer on PP‐PS blends and that of i‐PP‐g‐PMMA graft copolymer on PP‐PMMA blends were studied by scanning electron microscopy. Copyright © 2006 Society of Chemical Industry  相似文献   

9.
Combination of cationic, redox free radical, and thermal free radical polymerizations was performed to obtain linear and star polytetramethylene oxide (poly‐THF)‐polymethyl methacrylate (PMMA)/polystyrene (PSt) multiblock copolymers. Cationic polymerization of THF was initiated by the mixture of AgSbF6 and bis(4,4′ bromo‐methyl benzoyl) peroxide (BBP) or bis (3,5,3′,5′ dibromomethyl benzoyl) peroxide (BDBP) at 20°C to obtain linear and star poly‐THF initiators with Mw varying from 7,500 to 59,000 Da. Poly‐THF samples with hydroxyl ends were used in the methyl methacrylate (MMA) polymerization in the presence of Ce(IV) salt at 40°C to obtain poly(THF‐b‐MMA) block copolymers containing the peroxide group in the middle. Poly(MMA‐b‐THF) linear and star block copolymers having the peroxide group in the chain were used in the polymerization of methyl methacrylate (MMA) and styrene (St) at 80°C to obtain PMMA‐b‐PTHF‐b‐PMMA and PMMA‐b‐PTHF‐b‐PSt linear and star multiblock copolymers. Polymers obtained were characterizated by GPC, FT‐IR, DSC, TGA, 1H‐NMR, and 13C‐NMR techniques and the fractional precipitation method. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 219–226, 2004  相似文献   

10.
A new graft copolymers poly(aryl ether sulfone)‐graft‐polystyrene (PSF‐g‐PS) and poly(aryl ether sulfone)‐graft‐[polystyrene‐block‐poly(methyl methacrylate)] (PSF‐g‐(PS‐b‐PMMA)) were successfully prepared via atom transfer radical polymerisation (ATRP) catalyzed by FeCl2/isophthalic acid in N,N‐dimethyl formamide. The products were characterized by GPC, DSC, IR, TGA and NMR. The characterization data indicated that the graft copolymerization was accomplished via conventional ATRP mechanism. The effect of chloride content of the macroinitiator on the graft copolymerization was investigated. Only one glass transition temperature (Tg) was detected by DSC for the graft copolymer PSF‐g‐PS and two glass transition temperatures were observed in the DSC curve of PSF‐g‐(PS‐b‐PMMA). The presence of PSF in PSF‐b‐PS or PSF‐g‐(PS‐b‐PMMA) was found to improve thermal stabilities. © 2002 Society of Chemical Industry  相似文献   

11.
The miscibility and crystallization kinetics of the blends of random poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) [P(HB‐co‐HV)] copolymer and poly(methyl methacrylate) (PMMA) were investigated by differential scanning calorimetry (DSC) and polarized optical microscopy (POM). It was found that P(HB‐co‐HV)/PMMA blends were miscible in the melt. Thus the single glass‐transition temperature (Tg) of the blends within the whole composition range suggests that P(HB‐co‐HV) and PMMA were totally miscible for the miscible blends. The equilibrium melting point (T°m) of P(HB‐co‐HV) in the P(HB‐co‐HV)/PMMA blends decreased with increasing PMMA. The T°m depression supports the miscibility of the blends. With respect to the results of crystallization kinetics, it was found that both the spherulitic growth rate and the overall crystallization rate decreased with the addition of PMMA. The kinetics retardation was attributed to the decrease in P(HB‐co‐HV) molecular mobility and dilution of P(HB‐co‐HV) concentration resulting from the addition of PMMA, which has a higher Tg. According to secondary nucleation theory, the kinetics of spherulitic crystallization of P(HB‐co‐HV) in the blends was analyzed in the studied temperature range. The crystallizations of P(HB‐co‐HV) in P(HB‐co‐HV)/PMMA blends were assigned to n = 4, regime III growth process. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91: 3595–3603, 2004  相似文献   

12.
Star‐shaped polyhedral oligomeric silsesquioxane (POSS)–methacrylate hybrid copolymers with phenyl–triazole as terminal groups had been designed and synthesized via sequential atom transfer radical polymerization (ATRP), azidation, and phenylacetylene‐terminated procedures, and the hybrid copolymers here could be denoted as POSS–(PXMA‐Pytl)8, where X can be M, B, L, and S, represented four different methacrylate monomers, such as methacrylate (MMA), butyl methacrylate (BMA), lauryl methacrylate (LMA), and stearyl methacrylate (SMA), respectively. Thermal gravimetric analysis (TGA) and in situ Fourier transform infrared spectroscopy (FTIR) were applied for studying the thermal stability and degradation mechanism, and it was found that all of the POSS–(PXMA‐Cl)8 and POSS–(PXMA‐Pytl)8 copolymers exhibited excellent thermal stabilities, which had great potential in heat‐resistant material application. Different tendencies of decomposition temperatures at 5% and 10% weight loss (T5 and T10) dependent on the side‐chain length and terminal group species were investigated respectively. The longer alkyl side chains of the monomers, the lower thermal stabilities, and enhanced T5 and T10 were also shown with the introduction of phenyl–triazole groups instead of chlorine groups. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40652.  相似文献   

13.
To facilitate the dispersion of single‐walled carbon nanotubes (SWCNT) into poly(methyl methacrylate) (PMMA), SWCNT were functionalized with a RAFT chain transfer agent, and PMMA was grafted from the SWCNT by reversible addition–fragmentation transfer (RAFT) polymerization to give SWCNT‐g‐PMMA containing 6 wt % PMMA. SWCNT‐g‐PMMA in the form of small bundles was dispersed into PMMA matrices. The SWCNT‐g‐PMMA filler increased the glass transition temperature (Tg) of the composite when the matrix molecular weight Mn was less than the graft molecular weight, but not when the matrix Mn was equal to or greater than the graft Mn. The threshold of electrical conductivity of the composites as a function of weight percent SWCNT increased from 0.2% when matrix Mn was less than graft Mn to about 1% when matrix Mn was greater than graft Mn. Dynamic mechanical analyses of the composites having graft Mn less than or equal to matrix Mn showed broader rubbery plateaus with increased SWCNT content but no significant differences between samples with different grafted PMMAs. The results indicate that lower Mn matrix wets the SWCNT‐g‐PMMA whereas higher Mn matrix does not wet the SWCNT‐g‐PMMA. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39884.  相似文献   

14.
Poly(methyl methacrylate‐ran‐styrene) copolymers were synthesized under monomer‐starved conditions by emulsion copolymerization. The glass‐transition temperatures (Tg's) of the copolymers were measured by differential scanning calorimetry (DSC) and torsional braid analysis (TBA). The results showed that the methyl methacrylate–styrene random copolymers produced an asymmetric Tg versus composition curve, which could not even be interpreted by the Johnston equation with different contributions of dyads to the Tg of the copolymer considered. A new sequence distribution equation concerning different contributions of triads was introduced to predict the copolymer's Tg. The new equation fit the experimental data exactly. Also, the Tg determined by TBA (TgTBA) was higher than the one determined by DSC (TgDSC) and the difference was not constant. The rheological behavior of the copolymers was also studied. TgTBA ? TgDSC increased with increasing flow index of the melt of the copolymer, and the reason was interpreted. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 2891–2896, 2003  相似文献   

15.
A new and promising method for the diversification of microbial polyesters based on chemical modifications is introduced. Poly(3‐hydroxy alkanoate)‐g‐(poly(tetrahydrofuran)‐b‐poly(methyl methacrylate)) (PHA‐g‐(PTHF‐b‐PMMA)) multigraft copolymers were synthesized by the combination of cationic and free radical polymerization. PHA‐g‐PTHF graft copolymer was obtained by the cationic polymerization of THF initiated by the carbonium cations generated from the chlorinated PHAs, poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) (PHBV), and poly(3‐hydroxybutyrate‐co‐3‐hydroxyhexanoate) (PHBHx) in the presence of AgSbF6. Therefore, PHA‐g‐PTHF graft copolymers with hydroxyl ends were produced. In the presence of Ce+4 salt, these hydroxyl ends of the graft copolymer can initiate the redox polymerization of MMA to obtain PHA‐g‐(PTHF‐b‐PMMA) multigraft copolymer. Polymers obtained were purified by fractional precipitation. In this manner, their γ‐values (volume ratio of nonsolvent to the solvent) were also determined. Their molecular weights were determined by GPC technique. The structures were elucidated using 1H‐NMR and FTIR spectroscopy. Thermal analyses of the products were carried out using differential scanning calorimeter (DSC) and thermogravimetric analysis (TGA). © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

16.
Well‐defined poly(dimethylsiloxane)‐block‐poly(methyl methacrylate)‐block‐poly(2,2,3,3,4,4,4‐heptafluorobutyl methacrylate) (PDMS‐b‐PMMA‐b‐PHFBMA) triblock copolymers were synthesized via atom transfer radical polymerization (ATRP). Surface microphase separation in the PDMS‐b‐PMMA‐b‐PHFBMA triblock copolymer films was investigated. The microstructure of the block copolymers was investigated by transmission electron microscopy (TEM) and atomic force microscopy (AFM). Surface composition was studied by X‐ray photoelectron spectroscopy (XPS). The chemical composition at the surface was determined by the surface microphase separation in the PDMS‐b‐PMMA‐b‐PHFBMA triblock copolymer films. The increase of the PHFBMA content could strengthen the microphase separation behavior in the PDMS‐b‐PMMA‐b‐PHFBMA triblock copolymer films and reduce their surface tension. Comparison between the PDMS‐b‐PMMA‐b‐PHFBMA triblock copolymers and the PDMS‐b‐PHFBMA diblock copolymers showed that the introduction of the PMMA segments promote the fluorine segregation onto the surface and decrease the fluorine content in the copolymers with low surface energy. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

17.
A series of acrylic monomers–starch graft copolymers were prepared by ceric ion initiation method by varying the amount of monomers. These graft copolymers were characterized by IR and 13C‐NMR spectroscopy. It was seen that as the concentration of monomer [acrylic acid (AA), methacrylic acid (MA), and methyl methacrylate (MMA)] increased the percent add‐on increased in all the graft copolymers, whereas grafting efficiency increased initially but showed a slight decrease with further increase in the monomer concentration (except for MMA). The release rate of paracetamol as a model drug from graft copolymers as well as their blends was studied at two different pH, 1.2 and 7.4, spectrophotometrically. The release of paracetamol in phosphate buffer solution at pH 1.2 was insignificant in the first 3 h for St‐g‐PAA‐ and St‐g‐PMA‐graft copolymers, which was attributed to the matrix compaction and stabilization through hydrogen bonding at lower pH. At pH 7.4, the release rate was seen to decrease with increase in add‐on. The tablet containing poly(methyl methacrylate) (PMMA) did not disintegrate at the end of 30–32 h, which may be attributed to the hydrophobic nature of PMMA. These results indicate that the graft copolymers may be useful to overcome the harsh environment of the stomach and can be used as excipients in colon‐targeting matrices. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

18.
Well‐defined poly(methyl methacrylate) (PMMA)‐grafted natural rubbers (NRs) were prepared to study the structure–property relationships. Syntheses were achieved by the photopolymerization of methyl methacrylate initiated by N,N‐diethyldithiocarbamate groups created beforehand in side positions on the NR chains. With this procedure, good control of the graft density and PMMA content could be obtained. Thermal, morphological, and mechanical properties of NR‐g‐PMMA copolymers were studied as a function of the NR/PMMA composition and graft density. NR‐g‐PMMAs containing 15–80% grafted PMMA showed characteristics of heterogeneous materials (characterized by two glass‐transition temperatures, those of PMMA and NR, in differential scanning calorimetry). Under these conditions, they developed the morphology of thermoplastic elastomers with PMMA nodules dispersed in the rubber matrix when the PMMA content was near 20%; conversely, they developed the morphology of softened thermoplastics with rubber nodules dispersed in PMMA when the PMMA content was near 80%. Graft copolymers containing about 20% PMMA remained essentially rubbery, but they were already different from pure NR. On the other hand, the thermal stability of NR wash improved after the introduction of PMMA grafts onto NR chains. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

19.
The copolymerization of ethylene and substituted styrenes [RSt's; p‐methylstyrene (MSt), ptert‐butylstyrene (BSt), 2‐vinylnaphthalene (VN), and p‐(tert‐butyldimethylsilyloxy)styrene (BMSiOSt)] were investigated with dimethylsilylene(tetramethylcyclopentadienyl)(Ntert‐butyl)titanium dichloride to yield the corresponding ethylene–RSt copolymers. The substituent on the styrene (St) monomers did not affect the monomer reactivity ratio. The effect of the substituent structure of RSt on the thermal and mechanical properties was studied with differential scanning calorimetry, dynamic mechanical thermal spectroscopy, and elongation testing. The glass‐transition temperature (Tg) of the copolymers increased with increasing RSt content, and the order of Tg was as follows: BSt > VN > MSt = St. A copolymer with p‐hydroxystyrene (HOSt) was successively synthesized by means of deprotection of the copolymer with BMSiOSt. The copolymer showed a much higher Tg than the other copolymers because of the hydrogen connection of its OH groups. The mechanical properties of the copolymer in the glass state, at a lower temperature than Tg, were almost independent of the nature of the RSt. The substituent of the St monomers affected the pattern of the stress–strain curve in the elongation testing in the amorphous state. An improvement in the shape memory effect was observed in poly(ethylene‐co‐BSt). © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

20.
In this study, the structural and morphological properties of poly(methyl methacrylate)/poly(acrylonitrile‐g‐(ethylene‐co‐propylene‐co‐diene‐g‐styrene) (PMMA‐AES) blends were investigated with emphasis on the influence of the in situ polymerization conditions of methyl methacrylate. PMMA‐AES blends were obtained by in situ polymerization, varying the solvent (chloroform or toluene) and polymerization conditions: method A—no stirring and air atmosphere; method B—stirring and N2 atmosphere. The blends were characterized by infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and dynamic mechanical analysis (DMA). The results showed that the PMMA‐AES blends are immiscible and present complex morphologies. This morphology shows an elastomeric dispersed phase in a glassy matrix, with inclusion of the matrix in the elastomer domains, suggesting core shell or salami morphology. The occlusion of the glassy phase within the elastomeric domains can be due to the formation of graft copolymer and/or phase inversion during polymerization. However, this morphology is affected by the polymerization conditions (stirring and air or N2 atmosphere) and by the solvent used. The selective extraction of the blends' components and infrared spectroscopy showed that crosslinked and/or grafting reactions occur on the elastomer chains during MMA polymerization. The glass transition of the elastomer phase is influenced by morphology, crosslinking, and grafting degree and, therefore, Tg depends on the polymerization conditions. On the other hand, the behavior of Tg of the glassy phase with blend composition suggests miscibility or partial miscibility for the SAN phase of AES and PMMA. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号