首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Achieving highly accurate responses to external stimuli during human motion is a considerable challenge for wearable devices. The present study leverages the intrinsically high surface‐to‐volume ratio as well as the mechanical robustness of nanostructures for obtaining highly‐sensitive detection of motion. To do so, highly‐aligned nanowires covering a large area were prepared by capillarity‐based mechanism. The nanowires exhibit a strain sensor with excellent gauge factor (≈35.8), capable of high responses to various subtle external stimuli (≤200 µm deformation). The wearable strain sensor exhibits also a rapid response rate (≈230 ms), mechanical stability (1000 cycles) and reproducibility, low hysteresis (<8.1%), and low power consumption (<35 µW). Moreover, it achieves a gauge factor almost five times that of microwire‐based sensors. The nanowire‐based strain sensor can be used to monitor and discriminate subtle movements of fingers, wrist, and throat swallowing accurately, enabling such movements to be integrated further into a miniaturized analyzer to create a wearable motion monitoring system for mobile healthcare.  相似文献   

2.
3.
4.
Recently, electronic skin and smart textiles have attracted considerable attention. Flexible sensors, as a kind of indispensable components of flexible electronics, have been extensively studied. However, wearable airflow sensors capable of monitoring the environment airflow in real time are rarely reported. Herein, by mimicking the spider's fluff, an ultrasensitive and flexible all-textile airflow sensor based on fabric with in situ grown carbon nanotubes (CNTs) is developed. The fabric decorated with fluffy-like CNTs possesses exceptionally large contact area, endowing the airflow sensor with superior properties including ultralow detection limit (≈0.05 m s−1), multiangle airflow differential response (0°–90°), and fast response time (≈1.3 s). Besides, the fluffy fabric airflow sensor can be combined with a pristine fabric airflow sensor to realize highly sensitive detection in a wide airflow range (0.05–7.0 m s−1). Its potential applications including transmitting information according to Morse code by blowing the sensors, monitoring increasing and decreasing airflow velocity, and alerting blind people walking outside about potential hazard induced by nearby fast-moving objects are demonstrated. Furthermore, the airflow sensor can be directly integrated into clothing as stylish designs without sacrificing comfortness. It is believed that the ultrasensitive all-textile airflow sensor holds great promise for applications in smart textiles and wearable electronics.  相似文献   

5.
A flexible, transparent, chemical gas sensor is assembled from a transparent conducting film of carbon nanotube (CNT) networks that are coated with hierarchically nanostructured polyaniline (PANI) nanorods. The nanocomposite film is synthesized by in‐situ, chemical oxidative polymerization of aniline in a functional multiwalled CNT (FMWCNT) suspension and is simultaneously deposited onto a flexible polyethylene terephthalate (PET) substrate. An as‐prepared flexible transparent chemical gas sensor exhibits excellent transparency of 85.0% at 550 nm using the PANI/FMWCNT nanocomposite film prepared over a reaction time of 8 h. The sensor also shows good flexibility, without any obvious decrease in performance after 500 bending/extending cycles, demonstrating high‐performance, portable gas sensing at room temperature. This superior performance could be attributed to the improved electron transport and collection due to the CNTs, resulting in reliable and efficient sensing, as well as the high surface‐to‐volume ratio of the hierarchically nanostructured composites. The excellent transparency, improved sensing performance, and superior flexibility of the device, may enable the integration of this simple, low‐cost, gas sensor into handheld flexible transparent electronic circuitry and optoelectronic devices.  相似文献   

6.
Recently, flexible stretchable sensors have been gaining attention for their excellent adaptability for electronic skin applications. However, the preparation of stretchable strain sensors that achieve dual-mode sensing while still retaining ultra-low detection limit of strain, high sensitivity, and low cost is a pressing task. Herein, a high-performance dual-mode stretchable strain sensor (DMSSS) based on biomimetic scorpion foot slit microstructures and multi-walled carbon nanotubes (MWCNTs)/graphene (GR)/silicone rubber (SR)/Fe3O4 nanocomposites is proposed, which can accurately sense strain and magnetic stimuli. The DMSSS exhibits a large strain detection range (≈160%), sensitivity up to 100.56 (130–160%), an ultra-low detection limit of strain (0.16% strain), and superior durability (9000 cycles of stretch/release). The sensor can accurately recognize sign language movement, as well as realize object proximity information perception and whole process information monitoring. Furthermore, human joint movements and micro-expressions can be monitored in real-time. Therefore, the DMSSS of this work opens up promising prospects for applications in sign language pose recognition, non-contact sensing, human-computer interaction, and electronic skin.  相似文献   

7.
不同种类和性能碳纳米管的分离是其得到广泛应用的必要前提,分别介绍了不同电性质、手性、直径和长度的碳纳米管的分离方法,分离方法涉及了化学、物理和生物领域.有效分离后的碳纳米管具有相似的电学、力学和光学性能,因而使碳纳米管具有更大的潜在应用价值.  相似文献   

8.
Conductive, stretchable, environmentally‐friendly, and strain‐sensitive elastomers are attracting immense research interest because of their potential applications in various areas, such as human–machine interfaces, healthcare monitoring, and soft robots. Herein, a binary networked elastomer is reported based on a composite hydrogel of polyvinyl alcohol (PVA) and polyethyleneimine (PEI), which is demonstrated to be ultrastretchable, mechanically robust, biosafe, and antibacterial. The mechanical stretchability and toughness of the hydrogels are optimized by tuning the constituent ratio and water content. The optimal hydrogel (PVA2PEI1‐75) displays an impressive tensile strain as high as 500% with a corresponding tensile stress of 0.6 MPa. Furthermore, the hydrogel elastomer is utilized to fabricate piezoresistive sensors. The as‐made strain sensor displays seductive capability to monitor and distinguish multifarious human motions with high accuracy and sensitivity, like facial expressions and vocal signals. Therefore, the elastomer reported in this study holds great potential for sensing applications in the era of the Internet of Things (IoTs).  相似文献   

9.
This report highlights recent progress in the fabrication of vertically aligned carbon nanotubes (VA‐CNTs) on silicon‐based materials. Research into these nanostructured composite materials is spurred by the importance of silicon as a basis for most current devices and the disruptive properties of CNTs. Various CNT attachments methods of covalent and adsorptive nature are critically compared. Selected examples of device applications where the VA‐CNT on silicon assemblies are showing particular promise are discussed. These applications include field emitters, filtration membranes, dry adhesives, sensors and scaffolds for biointerfaces.

  相似文献   


10.
11.
With the rapid growth in wearable electronics sensing devices, flexible sensing devices that monitor the human body have shown great promise in personalized healthcare. In the study, high‐quality GaN pn junction microwire arrays with different aspect ratios and large‐area uniformity are fabricated through an easy, repeatable fabrication process. The piezoelectric coefficient (d33) of GaN pn junction microwire arrays increases from 7.23 to 14.46 pm V?1 with the increasing of the aspect ratio, which is several times higher than that of GaN bulk material. Furthermore, flexible ultrasensitive strain sensor based on GaN microwires with the highest d33 is demonstrated to achieve the maximum open circuit voltage of 10.4 V, and presents excellent durability with stable output signals over 10 000 cycles with a response time of 50 ms. As a flexible and wearable sensor attached to the human skin, the GaN microwire pn junction arrays with such a high degree of uniformity can precisely monitor subtle human pulse and motions, which show great promise in future personalized healthcare.  相似文献   

12.
For the past half century, silicon has served as the primary material platform for integrated circuit technology. However, the recent proliferation of nontraditional electronics, such as wearables, embedded systems, and low-power portable devices, has led to increasingly complex mechanical and electrical performance requirements. Among emerging electronic materials, single-walled carbon nanotubes (SWCNTs) are promising candidates for next-generation computing as a result of their superlative electrical, optical, and mechanical properties. Moreover, their chirality-dependent properties enable a wide range of emerging electronic applications including sub-10 nm complementary field-effect transistors, optoelectronic integrated circuits, and enantiomer-recognition sensors. Here, recent progress in SWCNT-based computing devices is reviewed, with an emphasis on the relationship between chirality enrichment and electronic functionality. In particular, after highlighting chirality-dependent SWCNT properties and chirality enrichment methods, the range of computing applications that have been demonstrated using chirality-enriched SWCNTs are summarized. By identifying remaining challenges and opportunities, this work provides a roadmap for next-generation SWCNT-based computing.  相似文献   

13.
14.
15.
为揭示碳纳米管湿度传感器的介电损耗,制作了一种电阻型碳纳米管湿度传感器.使用介电损耗相关理论对其频率特性进行分析,并利用普适方程建立了传感器介电损耗模型.对实验数据与所建立模型进行拟合,得到拟合决定系数为0.994,表明可以使用普适方程对传感器介电损耗进行描述.由于测试频率引起的传感器电阻变化会改变传感器线性度,分析了不同测试频率下传感器的线性度,发现当测试频率为10 kHz时传感器的线性度最佳(1.52%),此时传感器灵敏度为-7.83Ω/%RH.  相似文献   

16.
Stretchable strain sensors, as the soft mechanical interface, provide the key mechanical information of the systems for healthcare monitoring, rehabilitation assistance, soft exoskeletal devices, and soft robotics. Stretchable strain sensors based on 2D flat film have been widely developed to monitor the in‐plane force applied within the plane where the sensor is placed. However, to comprehensively obtain the mechanical feedback, the capability to detect the out‐of‐plane force, caused by the interaction outside of the plane where the senor is located, is needed. Herein, a 3D‐structured stretchable strain sensor is reported to monitor the out‐of‐plane force by employing 3D printing in conjunction with out‐of‐plane capillary force‐assisted self‐pinning of carbon nanotubes. The 3D‐structured sensor possesses large stretchability, multistrain detection, and strain‐direction recognition by one single sensor. It is demonstrated that out‐of‐plane forces induced by the air/fluid flow are reliably monitored and intricate flow details are clearly recorded. The development opens up for the exploration of next‐generation 3D stretchable sensors for electronic skin and soft robotics.  相似文献   

17.
为研究交流信号检测的多壁碳纳米管(MWCNTs)湿度传感器模型,通过扫描电子显微镜对传感器敏感薄膜(MWCNTs-SiO2薄膜)的孔隙结构进行观察,并使用表面积与孔隙(ASAP)分析系统对薄膜孔隙率进行分析.利用Debye方程对敏感薄膜中凝聚出液态水介电损耗的描述建立传感器模型.为了验证该传感器模型,制作了一种基于MWCNTs-SiO2的电导型湿度传感器,在100 kHz测试频率下,对不同相对湿度环境中的传感器电导值进行测试,利用测试结果与所建立模型进行拟合,发现R2大约为0.979,可见该模型可以用来描述传感器湿敏特性.  相似文献   

18.
采用催化热解方法分别 制备出碳纳米管和镓掺杂碳纳米管, 并利用丝网印刷工艺将其制备成纳米管薄膜. 对此薄膜进行低场致电子发射测试表明, 碳纳米管和镓掺杂纳米管开启电场分别为2.22和1.0V/μm, 当外加电场为2.4V/μm, 碳纳米管发射电流密度为400μA/cm2, 镓掺杂纳米管发射电流密度为4000μA/cm2. 可见镓掺杂碳纳米管的场发射性能优于同样条件下未掺杂时的碳纳米管. 对镓掺杂纳米管场发射机理进行了探讨.  相似文献   

19.
20.
Animals possess various functional systems such as sensory, nervous, and motor systems, which show effective cooperation in order to realize complicated and intelligent behaviors. This inspires rational designs for the integration of individual electronic devices to exhibit a series of functions, such as sensing, memory, and feedback. Inspired by the fact that humans can monitor and memorize various body motions, a motion memory device is developed to mimic this biological process. In this work, mechanical hybrid substrates are introduced, in which rigid memory devices and stretchable strain sensors are integrated into a single module, which enables them to work cooperatively in the wearable state. When attached to the joints of limbs, the motion memory device can detect the deformations caused by limb motions and simultaneously store the corresponding information in the memory device. This work would be valuable in materials design and electronics technology toward the realization of wearable and multifunctional electronic modules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号