首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A realistic propagation scenario is more frequently characterized by a composite multipath/shadowed fading. In this work, a class of Weibull/Lognormal (W-LN) composite fading channel has been analysed and investigated. New analytical approximations to various important performance metrics of wireless communication systems such as the average symbol error probability (SEP), the outage probability, the amount of fading (AF), and the channel capacity are derived. Further, an asymptotic analysis of the composite fading channel is carried out and closed form expressions of the average SEP with and without maximal ratio combining (MRC) diversity along with the coding and diversity gain are presented. The solutions are presented in terms of Fox H-function and are valid for both the integer and non-integer values of the multipath and shadowing parameters. The results are validated via Monte-Carlo simulations and exact numerical results.  相似文献   

2.
In this paper, we present an analytical framework to analyse the error probability and the channel capacity of the inverse gamma (I‐Gamma) shadowed fading channel. First, the work discusses the utility of the I‐Gamma over log‐normal (LN) and gamma fading models where the closeness of I‐Gamma with other existing shadowing models is carried out. Utilising the probability density function (PDF) of the I‐Gamma shadowed fading channel, various metrics of the communication system, namely, the average symbol error probability (SEP), the channel capacity under optimal rate adaptation (ORA), channel inversion with fixed rate (CIFR), and truncated CIFR (TIFR) are derived. Further, the work is extended to derive a novel selection combining (SC) PDF, and the analytical results for the SEP and the channel capacity of SC diversity are presented. Furthermore, we also provide simpler asymptotic expressions for the average SEP. In addition, the simplified high and low signal‐to‐noise‐ratio (SNR) solutions to channel capacity are also provided. The derived mathematical formulations have been endorsed by comparing with Monte Carlo simulations.  相似文献   

3.
Performance analysis of adaptive loading OFDM under Rayleigh fading   总被引:1,自引:0,他引:1  
In this paper, we investigate the performance of adaptive loading orthogonal frequency-division multiplexing (OFDM) under Rayleigh fading with maximal ratio-combining (MRC) diversity at the receiver. We assume that channel-state information is available at both the transmitter and the receiver. Closed-form expressions for the lower bound on the average capacity of OFDM transmission under Rayleigh fading are provided for ideal MRC diversity. Simple approximate expressions for the average capacity of the Rayleigh-fading channel are also provided for the high signal-to-noise ratio (SNR) case. In the second part of this paper, a maximum-rate adaptive-loading strategy is derived for uncoded quadrature-amplitude-modulation modulated OFDM. Simple lower bound expressions and high-SNR approximations are provided for the average spectral efficiency of the maximum-rate adaptive-loaded uncoded OFDM under Rayleigh-fading channel conditions. According to the results, the performance of the uncoded adaptive-loading OFDM is about 8.5 dB inferior to the capacity bound at 10/sup -5/ symbol error probability under frequency-selective Rayleigh fading.  相似文献   

4.
This paper derives new closed-form formulas for the error probabilities of single and multichannel communications in Rayleigh and Nakagami-m (1960) fading. Closed-form solutions to three generic trigonometric integrals are presented as part of the main result, providing a unified method for the derivation of exact closed-form average symbol-error probability expressions for binary and M-ary signals with L independent channel diversity reception. Both selection-diversity and maximal-ratio combining (MRC) techniques are considered. The results are generally applicable for arbitrary two-dimensional signal constellations that have polygonal decision regions operating in a slow Nakagami-m fading environments with positive integer fading severity index. MRC with generically correlated fading is also considered. The new expressions are applicable in many cases of practical interest. The closed-form expressions derived for a single channel reception case can be extended to provide an approximation for the error rates of binary and M-ary signals that employ an equal-gain combining diversity receiver  相似文献   

5.
Closed form expressions for the average probability of packet error (PPE) are presented for no diversity, maximum ratio combining (MRC), selection combining (SC) and switch and stay combining (SSC) diversity schemes. The average PPE for the no diversity case is obtained in two alternative expressions assuming arbitrarily correlated Nakagami and Rician fading channels. For the MRC case, L diversity branches are considered and the channel samples are assumed to follow Nakagami distribution and to be arbitrarily correlated in both time and space. For the SC diversity scheme with L diversity branches, two bounds on the average PPE are derived for both slow and fast fading channels. The average PPE in this case is obtained in an infinite integral form for Nakagami channels while it is reduced to a closed form expression for the Rayleigh case. The average PPE is also derived in the case of SSC diversity with dual branches for both slow and fast Rayleigh fading channels. The new formulas are applicable for all modulation schemes where the conditional probability of error has an exponential dependence on the signal‐to‐noise ratio. The average PPE is then used to obtain a modified expression for the throughput for network protocols. In general, the diversity gain exhibits a little diminishing effect as the number of diversity branches increases. In addition, the system is found to be more sensitive to the space correlation than to the time correlation. The effects of different system parameters and diversity schemes are studied and discussed. Specific figures about the system performance are also provided. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

6.
Exact results are presented for infinite integrals that consist of higher-order powers of the one dimensional Gaussian Q-function averaged over Rayleigh fading envelopes in multi-branch diversity reception with maximal ratio combining (MRC). Some known results for the average of the 1st and 2nd powers are shown as special cases. The results obtained in this paper are utilized to study the average symbol error probability (SEP) performance of differentially encoded quadri-phase shift-keying (DE-QPSK) in Rayleigh fading channels employing MRC, and new exact expressions are presented for different fading scenarios. The derived mathematical expressions are verified using Monte Carlo simulations.  相似文献   

7.
Diversity reception over generalized-K (KG) fading channels   总被引:2,自引:0,他引:2  
A detailed performance analysis for the most important diversity receivers operating over a composite fading channel modeled by the generalized-K (Kg) distribution is presented. The Kg distribution has been recently considered as a generic and versatile distribution for the accurate modeling of a great variety of short term fading in conjunction with long term fading (shadowing) channel conditions. For this relatively new composite fading model, expressions for important statistical metrics of maximal ratio combining (MRC), equal gain combining (EGC), selection combining (SC) and switch and stay combining (SSC) diversity receivers are derived. Using these expressions and by considering independent but not necessarily identical distributed fading channel conditions, performance criteria, such as average output signal-to-noise ratio, amount of fading and outage probability are obtained in closed form. Moreover, following the moments generating function (MGF) based approach for MRC and SSC receivers, and the Pade approximants method for SC and EGC receivers, the average bit error probability is studied. The proposed mathematical analysis is complemented by various performance evaluation results which demonstrate the accuracy of the theoretical approach.  相似文献   

8.
In this paper, using an accurate exponential based approximation on the Gaussian Q function, the simplified novel approximations to the average of some useful forms of Gaussian Q functions, with maximal-ratio combining (MRC) diversity reception, over independent but not necessarily identical Nakagami-q (Hoyt) and Rician fading channels are proposed. The results proved to be useful in accurate estimation of the symbol error probability (SEP) for various digital modulation schemes like cross-QAM, triangular-QAM (TQAM), rectangular-QAM and square-QAM (SQAM), over the same fading statistics. Asymptotic expressions of the proposed approximations are also derived in this paper. Various simulation results are provided to verify the accuracy and significance of the proposed work.  相似文献   

9.
We derive analytical expressions for the symbol error probability (SEP) for a hybrid selection/maximal-ratio combining (H-S/MRC) diversity system in multipath-fading wireless environments. With H-S/MRC, L out of N diversity branches are selected and combined using maximal-ratio combining (MRC). We consider coherent detection of M-ary phase-shift keying (MPSK) and quadrature amplitude modulation (MQAM) using H-S/MRC for the case of independent Rayleigh fading with equal signal-to-noise ratio averaged over the fading. The proposed problem is made analytically tractable by transforming the ordered physical diversity branches, which are correlated, into independent and identically distributed (i.i.d.) “virtual branches,” which results in a simple derivation of the SEP for arbitrary L and N. We further obtain a canonical structure for the SEP of H-S/MRC as a weighted sum of the elementary SEPs, which are the SEPs using MRC with i.i.d. diversity branches in Rayleigh fading, or equivalently the SEPs of the nondiversity (single-branch) system in Nakagami fading, whose closed-form expressions are well-known. We present numerical examples illustrating that H-S/MRC, even with L≪N, can achieve a performance close to that of N-branch MRC  相似文献   

10.
In this paper, the performance of an underlay cognitive radio system with random mobility and imperfect channel state information (CSI) is investigated. The mobile user (MU) utilises maximum ratio combining (MRC) and selection combining (SC) diversity techniques as signal reception to improve the quality of received signal‐to‐noise ratio (SNR). Under the Rayleigh fading, random waypoint mobility model is employed to characterised the effect of the MU random mobility on the system performance. Thus, novel probability density function (PDF) and cumulative distribution function (CDF) for the two considered diversity techniques are derived. Through these, the outage probability and average bit error rate (ABER) closed‐form analytical expressions are then obtained to quantify the system performance under the MRC and SC schemes. The results illustrate the effect of imperfect CSI, user mobility which is characterised by pathloss and the network topology on the system performance. Also, the results depict that MRC offers the system better performance compared with SC under the same system conditions. The accuracy of the derived analytical expressions is verified through Monte‐Carlo simulations.  相似文献   

11.
This paper analyse and investigate the performance of communication system with maximal ratio combining (MRC) and selection combining (SC) over Inverse Gaussian (IG) fading distribution. All formats of coherent and non-coherent modulation schemes are considered and novel analytical expressions of average symbol error probability (ASEP) with diversity are derived. Gamma and IG fading distributions are popularly used as a mathematically less complex solution to lognormal in the open literature. Hence, we provide a comparative analysis between IG and gamma fading with the aim to provide a quantitative measure of the difference between the two distributions in the context of ASEP. Moreover, the novel closed-form expressions of channel capacity under transmission schemes such as optimal rate adaptation (ORA) and channel inversion fixed rate (CIFR) are derived and analysed with MRC and SC diversity over IG fading. The analytical results have been validated with the Monte Carlo simulations and the exact numerical results.  相似文献   

12.
We derive and analyze the exact closed‐form expression for the average bit error probability (BEP) of M‐ary square quadrature amplitude modulation (QAM) for diversity reception in frequency‐nonselective Nakagami fading. A maximal ratio combining (MRC) diversity technique with independent or correlated fading cases are considered. Numerical results demonstrate error performance improvement with the use of MRC diversity reception. The presented new expressions offer a convenient way to evaluate the performance of M‐ary square QAM with an MRC diversity combiner for various cases of practical interest.  相似文献   

13.
In this paper, we study the asymptotic behavior of the bit-error probability (BEP) and the symbol-error probability (SEP) of quadratic diversity combining schemes such as coherent maximum-ratio combining (MRC), differential equal-gain combining (EGC), and noncoherent combining (NC) in correlated Ricean fading and non-Gaussian noise, which in our definition also includes interference. We provide simple and easy-to-evaluate asymptotic BEP and SEP expressions which show that at high signal-to-noise ratios (SNRs) the performance of the considered combining schemes depends on certain moments of the noise and interference impairing the transmission. We derive general rules for calculation of these moments and we provide closed-form expressions for the moments of several practically important types of noise such as spatially dependent and spatially independent Gaussian mixture noise, correlated synchronous and asynchronous co-channel interference, and correlated Gaussian interference. From our asymptotic results we conclude that (a) the asymptotic performance loss of binary frequency-shift keying (BFSK) with NC compared to binary phase-shift keying (BPSK) with MRC is always 6 dB independent of the type of noise and the number of diversity branches, (b) the asymptotic performance loss of differential EGC compared to MRC is always 3 dB for additive white Gaussian noise but depends on the number of diversity branches and may be larger or smaller than 3 dB for other types of noise, and (c) not only fading correlation but also noise correlation negatively affects the performance of quadratic diversity combiners.  相似文献   

14.
A closed-form expression of cumulative distribution function (CDF) of the instantaneous signal to noise ratio (SNR) in Hoyt fading channel is derived. This CDF and associated formulas are then used to find out the error probability of non-coherent M-ary frequency shift keying with multichannel reception. Simple finite-range integral expression for the symbol error probability (SEP) with selection diversity is found through CDF method. Next, closed-form expressions of moment generating functions (MGF) are presented for the switched diversity case and SEP values are calculated using the derived MGFs. Some other performance parameters like, outage probability and average SNR with switched diversity, are provided. In addition, analytic frameworks are presented for calculation of optimum switching thresholds that ensure minimum outage probability or minimum SEP. The analysis is quite general in the sense that it covers switch and stay combining and Rayleigh fading as special cases.  相似文献   

15.
采用两条支路分集接收的相关瑞利衰落信道容量   总被引:5,自引:0,他引:5  
李光球 《电子学报》2003,31(7):1018-1021
本文研究采用两条支路最大比合并(MRC)或选择合并(SC)分集接收的相关瑞利衰落信道理论容量推导恒定发射功率自适应M进制正交幅度调制(M-QAM)的频谱效率,并将它们与独立同分布瑞利信道理论容量进行比较,其结果对收发信机之间无视距分量路径、接收机上分集天线之间的距离小于半个波长的无线通信系统设计具有指导作用.  相似文献   

16.
In this paper, the authors derive symbol error probability (SEP) expressions for coherent M‐ary frequency shift keying (MFSK) modulation schemes in multipath fading channels. The multipath or small‐scale fading process is assumed to be slow and frequency non‐selective. In addition, the channel is also subjected to the usual degradation caused by the additive white Gaussian noise (AWGN). Different small‐scale fading statistics such as Rayleigh, Rician (Nakagami‐n), Hoyt (Nakagami‐q), and Nakagami‐m have been considered to portray diverse wireless environments. Further, to mitigate fading effects through space diversity, the receiver front‐end is assumed to be equipped with multiple antennas. Independent and identically distributed (IID) as well as uncorrelated signal replicas received through all these antennas are combined with a linear combiner before successive demodulation. As the detection is coherent in nature and thus involves phase estimation, optimum phase‐coherent combining algorithms, such as predetection maximal ratio combining (MRC), may be used without any added complexity to the receiver. In the current text, utilizing the alternate expressions for integer powers (1≤n≤4) of Gaussian Q function, SEP values of coherent MFSK are obtained through moment generating function (MGF) approach for all the fading models (with or without MRC diversity) described above. The derived end expressions are composed of finite range integrals, which can be numerically computed with ease, dispenses with the need of individual expressions for different M, and gives exact values up to M=5. When the constellation size becomes bigger (M≥6), the same SEP expressions provide a quite realistic approximation, much tighter than the bounds found in previous literatures. Error probabilities are graphically displayed for each fading model with different values of constellation size M, diversity order L, and for corresponding fading parameters (K, q, or m). To validate the proposed approximation method extensive Monte‐Carlo simulations were also performed, which show a close match with the analytical results deduced in the paper. Both these theoretical and simulation results offer valuable insight to assess the efficacy of relatively less studied coherent MFSK in the context of the optimum modulation choice in wireless communication. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
相关衰落信道上MIMO系统中组合SC/MRC的性能分析   总被引:1,自引:0,他引:1  
研究相关瑞利衰落信道上MIMO系统中组合发射机选择合并(SC)/接收机最大比合并(MRC)的天线分集系统性能.使用矩生成函数方法,推导相关瑞利衰落信道上采用组合SC/MRC天线分集争相干检测的M进制相移键控(MPSK),M进制正交幅度调制(MQAM),M进制脉冲幅度调制(MPAM)等几种M进制数字调制方式的误符号率精确表达式.数值计算结果阐明相关性和天线阵结构对采用组合SC/MRC天线分集的几种M进制数字调制方式的平均误符号率性能的影响.  相似文献   

18.
In this work, unified performance analysis of various transmit, receive and hybrid diversity techniques are studied over generalised‐K composite fading channels. Of transmit diversity techniques, orthogonal space‐time block coding, maximal‐ratio transmission and transmit antenna selection techniques are investigated. On the other hand, maximal‐ratio combining and selection combining are examined as receive antenna diversity techniques. In this paper, 10 different multi‐antenna techniques have been analyzed. Exact outage probability, symbol error probability, moment generating function, moments and ergodic capacity expressions are derived in closed‐form. Asymptotic expressions are also derived in order to provide deeper insight by obtaining array and diversity gains of the studied multi‐antenna scenarios. Simulations verify theoretical results. We show that the diversity orders of the investigated scenarios are the minimum of the diversity orders of the system for only small‐scale fading channel case and the shadowing parameter, and limited by the shadowing effect especially in heavy shadowing case. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
The exact average symbol error probability (SEP) of the cross quadrature amplitude modulation signal in a single-input multiple-output system over independent but not necessarily identical fading channels is derived. The maximal-ratio combining (MRC) is considered as the diversity technique, and the average SEP is obtained by using the moment generating function (MGF) method. The obtained closed-form SEP expression is presented in terms of a finite sum of single integrals with finite limits and an integrand composed of a finite product of elementary functions. In addition, the arbitrarily tight approximations with the form of a sum of constant coefficient exponential functions for Gaussian Q-function and the generalization of its Craig’s form are proposed by applying the composite rectangle and Simpson numerical integration rules, respectively. The proposed approximations are simple and accurate enough even with only a few terms of exponential functions, and they are particularly suitable for applications of averaging Q-function and the generalized Q-function over the fading distributions. As a result, the closed-form approximations of the SEP over the AWGN channel and fading multichannels are expressed as a finite sum of exponential functions and a finite sum of MGFs, respectively, such that it is convenient and rapid to evaluate the SEP performances. Both the simulation results and the approximations show excellent agreement with the exact analytical expressions.  相似文献   

20.
The level crossing rates (LCRs) and average fade durations (AFDs) of a fading channel find diverse applications in the evaluation and design of wireless communication systems. Analytical expressions for these quantities are available in the literature for certain diversity reception techniques, but are generally limited to the Rayleigh fading channel, with few exceptions. Moreover, the methods employed are usually specific to a certain channel/diversity pair, and thus cannot be applied to all cases of interest. Using a unified methodology, we derive analytical expressions for the LCRs and AFDs for three diversity reception techniques and a general Nakagami (1960) fading channel. We provide novel analytical expressions for selection combining (SC) and equal-gain combining (EGC), and rederive in a more general manner the case of maximal-ratio combining (MRC). It is shown that our general results reduce to some specific cases previously published. These results are used to examine the effects of the diversity technique, the number of receiving branches and severity of the fading on the concerned quantities. It is observed that as the Nakagami m-parameter and the diversity order increase, the behavior of the combined received envelope for EGC follows closely the one for MRC, and distances itself from SC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号