首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Instability of perovskite quantum dots (QDs) toward humidity remains one of the major obstacles for their long‐term use in optoelectronic devices. Herein, a general amphiphilic star‐like block copolymer nanoreactor strategy for in situ crafting a set of hairy perovskite QDs with precisely tunable size and exceptionally high water and colloidal stabilities is presented. The selective partition of precursors within the compartment occupied by inner hydrophilic blocks of star‐like diblock copolymers imparts in situ formation of robust hairy perovskite QDs permanently ligated by outer hydrophobic blocks via coprecipitation in nonpolar solvent. These size‐ and composition‐tunable perovskite QDs reveal impressive water and colloidal stabilities as the surface of QDs is intimately and permanently ligated by a layer of outer hydrophobic polymer hairs. More intriguingly, the readily alterable length of outer hydrophobic polymers renders the remarkable control over the stability enhancement of hairy perovskite QDs.  相似文献   

2.
Organic–inorganic hybrid perovskite materials are emerging as semiconductors with potential application in optoelectronic devices. In particular, perovskites are very promising for light‐emitting devices (LEDs) due to their high color purity, low nonradiative recombination rates, and tunable bandgap. Here, using pure CH3NH3PbI3 perovskite LEDs with an external quantum efficiency (EQE) of 5.9% as a platform, it is shown that electrical stress can influence device performance significantly, increasing the EQE from an initial 5.9% to as high as 7.4%. Consistent with the enhanced device performance, both the steady‐state photoluminescence (PL) intensity and the time‐resolved PL decay lifetime increase after electrical stress, indicating a reduction in nonradiative recombination in the perovskite film. By investigating the temperature‐dependent characteristics of the perovskite LEDs and the cross‐sectional elemental depth profile, it is proposed that trap reduction and resulting device‐performance enhancement is due to local ionic motion of excess ions, likely excess mobile iodide, in the perovskite film that fills vacancies and reduces interstitial defects. On the other hand, it is found that overstressed LEDs show irreversibly degraded device performance, possibly because ions initially on the perovskite lattice are displaced during extended electrical stress and create defects such as vacancies.  相似文献   

3.
Developing low‐cost and high‐quality quantum dots (QDs) or nanocrystals (NCs) and their corresponding efficient light‐emitting diodes (LEDs) is crucial for the next‐generation ultra‐high‐definition flexible displays. Here, there is a report on a room‐temperature triple‐ligand surface engineering strategy to play the synergistic role of short ligands of tetraoctylammonium bromide (TOAB), didodecyldimethylammonium bromide (DDAB), and octanoic acid (OTAc) toward “ideal” perovskite QDs with a high photoluminescence quantum yield (PLQY) of >90%, unity radiative decay in its intrinsic channel, stable ink characteristics, and effective charge injection and transportation in QD films, resulting in the highly efficient QD‐based LEDs (QLEDs). Furthermore, the QD films with less nonradiative recombination centers exhibit improved PL properties with a PLQY of 61% through dopant engineering in A‐site. The robustness of such properties is demonstrated by the fabrication of green electroluminescent LEDs based on CsPbBr3 QDs with the peak external quantum efficiency (EQE) of 11.6%, and the corresponding peak internal quantum efficiency (IQE) and power efficiency are 52.2% and 44.65 lm W?1, respectively, which are the most‐efficient perovskite QLEDs with colloidal CsPbBr3 QDs as emitters up to now. These results demonstrate that the as‐obtained QD inks have a wide range application in future high‐definition QD displays and high‐quality lightings.  相似文献   

4.
Colloidal quantum dots (QDs) are promising candidate materials for photovoltaics (PV) owing to the tunable bandgap and low‐cost solution processability. Lead selenide (PbSe) QDs are particularly attractive to PV applications due to the efficient multiple‐exciton generation and carrier transportation. However, surface defects arising from the oxidation of the PbSe QDs have been the major limitation for their development in PV. Here, a new passivation method for chlorinated PbSe QDs via ion exchange with cesium lead halide (Br, I) perovskite nanocrystals is reported. The surface chloride ions on the as‐synthesized QDs can be partially exchanged with bromide or iodide ions from the perovskite nanocrystals, hence forming a hybrid halide passivation. Consistent with the improved photoluminescence quantum yield, the champion PV device fabricated with these PbSe QDs achieves a PCE of 8.2%, compared to 7.3% of that fabricated with the untreated QDs. This new method also leads to devices with excellent air‐stability, retaining at least 93% of their initial PCEs after being stored in ambient conditions for 57 d. This is considered as the first reported PbSe QD solar cell with a PCE of over 8% to date.  相似文献   

5.
Metal halide perovskites represent a family of the most promising materials for fascinating photovoltaic and photodetector applications due to their unique optoelectronic properties and much needed simple and low‐cost fabrication process. The high atomic number (Z) of their constituents and significantly higher carrier mobility also make perovskite semiconductors suitable for the detection of ionizing radiation. By taking advantage of that, the direct detection of soft‐X‐ray‐induced photocurrent is demonstrated in both rigid and flexible detectors based on all‐inorganic halide perovskite quantum dots (QDs) synthesized via a solution process. Utilizing a synchrotron soft‐X‐ray beamline, high sensitivities of up to 1450 µC Gyair?1 cm?2 are achieved under an X‐ray dose rate of 0.0172 mGyair s?1 with only 0.1 V bias voltage, which is about 70‐fold more sensitive than conventional α‐Se devices. Furthermore, the perovskite film is printed homogeneously on various substrates by the inexpensive inkjet printing method to demonstrate large‐scale fabrication of arrays of multichannel detectors. These results suggest that the perovskite QDs are ideal candidates for the detection of soft X‐rays and for large‐area flat or flexible panels with tremendous application potential in multidimensional and different architectures imaging technologies.  相似文献   

6.
Halide perovskites have high light absorption coefficients, long charge carrier diffusion lengths, intense photoluminescence, and slow rates of non‐radiative charge recombination. Thus, they are attractive photoactive materials for developing high‐performance optoelectronic devices. These devices are also cheap and easy to be fabricated. To realize the optimal performances of halide perovskite‐based optoelectronic devices (HPODs), perovskite photoactive layers should work effectively with other functional materials such as electrodes, interfacial layers and encapsulating films. Conventional two‐dimensional (2D) materials are promising candidates for this purpose because of their unique structures and/or interesting optoelectronic properties. Here, we comprehensively summarize the recent advancements in the applications of conventional 2D materials for halide perovskite‐based photodetectors, solar cells and light‐emitting diodes. The examples of these 2D materials are graphene and its derivatives, mono‐ and few‐layer transition metal dichalcogenides (TMDs), graphdiyne and metal nanosheets, etc. The research related to 2D nanostructured perovskites and 2D Ruddlesden–Popper perovskites as efficient and stable photoactive layers is also outlined. The syntheses, functions and working mechanisms of relevant 2D materials are introduced, and the challenges to achieving practical applications of HPODs using 2D materials are also discussed.  相似文献   

7.
The recent success of organometallic halide perovskites (OHPs) in photovoltaic devices has triggered lots of corresponding research and many perovskite analogues have been developed to look for devices with comparable performance but better stability. Upon the preparation of all inorganic halide perovskite nanocrystals (IHP NCs), research activities have soared due to their better stability, ultrahigh photoluminescence quantum yield (PL QY), and composition dependent luminescence covering the whole visible region with narrow line‐width. They are expected to be promising materials for next generation lighting and display, and many other applications. Within two years, a lot of interesting results have been observed. Here, the synthesis of IHPs is reviewed, and their progresses in optoelectronic devices and optical applications, such as light‐emitting diodes (LEDs), photodetectors (PDs), solar cells (SCs), and lasing, is presented. Information and recent understanding of their crystal structures and morphology modulations are addressed. Finally, a brief outlook is given, highlighting the presently main problems and their possible solutions and future development directions.  相似文献   

8.
Lead halide perovskite single crystals have emerged as promising candidates for high-performance optoelectronic devices because of their superior optoelectronic properties. To date, much literature has reported the fabrication of various perovskite single-crystal structures. However, it still lacks effective rationalization and a comprehensive understanding of the relationship between the structural characteristics and functional properties of the perovskite single crystals, which is of great significance for fabricating perovskite single crystals-based high-performance optoelectronic devices. In this review, we give a comprehensive overview of the synthesis of perovskite single crystals with diverse dimensions, including 0D perovskite quantum dots (QDs), 1D micro/nanowires, 2D micro/nanoplates and single-crystal thin films (SCTFs), and 3D micro/nanoscale single-crystal structures. The relationship between the dimensional structure and properties of the perovskite single crystals is discussed in detail. Dimensional requirements for different optoelectronic applications are systematically summarized. Finally, perspectives on remaining challenges and future opportunities are highlighted.  相似文献   

9.
In this study, a novel perovskite quantum dot (QD) spray‐synthesis method is developed by combining traditional perovskite QD synthesis with the technique of spray pyrolysis. By utilizing this new technique, the synthesis of cubic‐shaped perovskite QDs with a homogeneous size of 14 nm is demonstrated, which shows an unprecedented stable absolute photoluminescence quantum yield ≈100% in the solution and even in the solid‐state neat film. The highly emissive thin films are integrated with light emission devices (LEDs) and organic light emission displays (OLEDs). The color conversion type QD‐LED (ccQD‐LED) hybrid devices exhibit an extremely saturated green emission, excellent external quantum efficiency of 28.1%, power efficiency of 121 lm W?1, and extraordinary forward‐direction luminescence of 8 500 000 cd m?2. The conceptual ccQD‐OLED hybrid display also successfully demonstrates high‐definition still images and moving pictures with a 119% National Television System Committee 1931 color gamut and 123% Digital Cinema Initiatives‐P3 color gamut. These very‐stable, ultra‐bright perovskite QDs have the properties necessary for a variety of useful applications in optoelectronics.  相似文献   

10.
Color‐saturated red light‐emitting diodes (LEDs) with emission wavelengths at around 620–640 nm are an essential part of high‐definition displays. Metal halide perovskites with very narrow emission linewidth are promising emitters, and rapid progress has been made in perovskite‐based LEDs (PeLEDs); however, the efficiency of the current color—pure red PeLEDs—still far lags behind those of other‐colored ones. Here, a simple but efficient strategy is reported to gradually down‐shift the Fermi level of perovskite nanocrystals (NCs) by controlling the interaction between NCs and their surface molecular electron acceptor—benzyl iodide with aromatic rings—and realize p‐doping in the color‐saturated 625 nm emitting NCs, which significantly reduces the hole injection barrier in devices. Besides, both the luminescence efficiency and electric conductivity of perovskite NCs are enhanced as additional advantages as the result of surface defects passivation. As a result, the external quantum efficiency for the resulting LED is increased from 4.5% to 12.9% after benzyl iodide treatment, making this device the best‐performing color‐saturated red PeLED so far. It is further found that the hole injection plays a more critical role than the photoluminescence efficiency of perovskite emitter in determining the LED performance, which implies design principles for efficient thin‐film planar LEDs.  相似文献   

11.
Lead halide perovskites are promising materials for a range of applications owing to their unique crystal structure and optoelectronic properties. Understanding the relationship between the atomic/mesostructures and the associated properties of perovskite materials is crucial to their application performances. Herein, the detailed pressure processing of CsPbBr3 perovskite nanocube superlattices (NC‐SLs) is reported for the first time. By using in situ synchrotron‐based small/wide angle X‐ray scattering and photoluminescence (PL) probes, the NC‐SL structural transformations are correlated at both atomic and mesoscale levels with the band‐gap evolution through a pressure cycle of 0 ? 17.5 GPa. After the pressurization, the individual CsPbBr3 NCs fuse into 2D nanoplatelets (NPLs) with a uniform thickness. The pressure‐synthesized perovskite NPLs exhibit a single cubic crystal structure, a 1.6‐fold enhanced photoluminescence quantum yield, and a longer emission lifetime than the starting NCs. This study demonstrates that pressure processing can serve as a novel approach for the rapid conversion of lead halide perovskites into structures with enhanced properties.  相似文献   

12.
Organic–inorganic hybrid perovskites have cemented their position as an exceptional class of optoelectronic materials thanks to record photovoltaic efficiencies of 22.1%, as well as promising demonstrations of light‐emitting diodes, lasers, and light‐emitting transistors. Perovskite materials with photoluminescence quantum yields close to 100% and perovskite light‐emitting diodes with external quantum efficiencies of 8% and current efficiencies of 43 cd A?1 have been achieved. Although perovskite light‐emitting devices are yet to become industrially relevant, in merely two years these devices have achieved the brightness and efficiencies that organic light‐emitting diodes accomplished in two decades. Further advances will rely decisively on the multitude of compositional, structural variants that enable the formation of lower‐dimensionality layered and three‐dimensional perovskites, nanostructures, charge‐transport materials, and device processing with architectural innovations. Here, the rapid advancements in perovskite light‐emitting devices and lasers are reviewed. The key challenges in materials development, device fabrication, operational stability are addressed, and an outlook is presented that will address market viability of perovskite light‐emitting devices.  相似文献   

13.
Metal halide perovskites, as a new generation of semiconductor materials, have been widely applied in various optoelectronic devices, especially in the field of perovskite light-emitting diodes (PeLEDs). The external quantum efficiencies (EQEs) of green, red, and near-infrared PeLEDs have exceeded 20% for the last few years, which are comparable to those of the state-of-the-art organic light-emitting diodes (OLEDs) and quantum-dot light-emitting diodes (QLEDs). However, the performances of blue PeLEDs lag far behind those of their counterparts, presumably due to the low quantum yields of blue perovskite films, the instability of the emission spectra, and the difficulties in charge injection for the devices under operation conditions. In this review, the structures and physical properties of blue emissive perovskite materials and the preparation methods of the corresponding perovskite films are firstly addressed. Then, the recent advances and strategies to improve the efficiency of blue PeLEDs are outlined, and the main challenges faced with the blue PeLEDs are also discussed. Finally, an outlook on blue LEDs based on perovskite materials is proposed.  相似文献   

14.
Metal halide perovskites have been in the limelight in recent years due to their enormous potential for use in optoelectronic devices, owing to their unique combination of properties, such as high absorption coefficient, long charge‐carrier diffusion lengths, and high defect tolerance. Perovskite‐based solar cells and light‐emitting diodes (LEDs) have achieved remarkable breakthroughs in a comparatively short amount of time. As of writing, a certified power conversion efficiency of 22.7% and an external quantum efficiency of over 10% have been achieved for perovskite solar cells and LEDs, respectively. Interfaces and defects have a critical influence on the properties and operational stability of metal halide perovskite optoelectronic devices. Therefore, interface and defect engineering are crucial to control the behavior of the charge carriers and to grow high quality, defect‐free perovskite crystals. Herein, a comprehensive review of various strategies that attempt to modify the interfacial characteristics, control the crystal growth, and understand the defect physics in metal halide perovskites, for both solar cell and LED applications, is presented. Lastly, based on the latest advances and breakthroughs, perspectives and possible directions forward in a bid to transcend what has already been achieved in this vast field of metal halide perovskite optoelectronic devices are discussed.  相似文献   

15.
Tin oxide(SnO_2) is a promising wide bandgap semiconductor for next generation ultraviolet(UV) nonpolar optoelectronic devices applications.The development of SnO_2-based optoelectronic devices is obsessed by its low exciton emission efficiency.In this study,quantum confined SnO_2 nanocrystals have been fabricated via pulsed laser ablation in water.The SnO_2 quantum dots(QDs) possess high performance exciton emission at 297-300 nm light in water.The exciton emission intensity and wavelength can be slightly tuned by laser pulse energy and irradiation time.Optical gain has been observed in SnO_2QDs.Therefore,SnO_2 QDs can be a promising luminescence material for the realization of deep UV nanoemitter and lasing devices.  相似文献   

16.
Whereas organic–inorganic hybrid perovskite nanocrystals (PNCs) have remarkable potential in the development of optoelectronic materials, their relatively poor chemical and colloidal stability undermines their performance in optoelectronic devices. Herein, this issue is addressed by passivating PNCs with a class of chemically addressable ligands. The robust ligands effectively protect the PNC surfaces, enhance PNC solution processability, and can be chemically addressed by thermally induced crosslinking or radical‐induced polymerization. This thin polymer shield further enhances the photoluminescence quantum yields by removing surface trap states. Crosslinked methylammonium lead bromide (MAPbBr3) PNCs are applied as active materials to build light‐emitting diodes that have low turn‐on voltages and achieve a record luminance of over 7000 cd m?2, around threefold better than previous reported MA‐based PNC devices. These results indicate the great potential of this ligand passivation approach for long lifespan, highly efficient PNC light emitters.  相似文献   

17.
Wurtzite materials exhibit both semiconductor and piezoelectric properties under strains due to the non‐central symmetric crystal structures. The three‐way coupling of semiconductor properties, piezoelectric polarization and optical excitation in ZnO, GaN, CdS and other piezoelectric semiconductors leads to the emerging field of piezo‐phototronics. This effect can efficiently manipulate the emission intensity of light‐emitting diodes (LEDs) by utilizing the piezo‐polarization charges created at the junction upon straining to modulate the energy band diagrams and the optoelectronic processes, such as generation, separation, recombination and/or transport of charge carriers. Starting from fundamental physics principles, recent progress in piezo‐phototronic‐effect‐enhanced LEDs is reviewed; following their development from single‐nanowire pressure‐sensitive devices to high‐resolution array matrices for pressure‐distribution mapping applications. The piezo‐phototronic effect provides a promising method to enhance the light emission of LEDs based on piezoelectric semiconductors through applying static strains, and may find perspective applications in various optoelectronic devices and integrated systems.  相似文献   

18.
The development of the photostable higher‐order multiphoton‐excited (MPE) upconversion single microcrystalline material is fundamentally and technologically important, but very challenging. Here, up to five‐photon excited luminescence in a host–guest metal–organic framework (MOF) and perovskite quantum dot (QD) hybrid single crystal ZJU‐28?MAPbBr3 is shown via an in situ growth approach. Such a MOF strategy not only results in a high QD loading concentration, but also significantly diminishes the aggregation‐caused quenching (ACQ) effect, provides effective surface passivation, and greatly reduces the contact of the QDs with the external bad atmosphere due to the confinement effect and protection of the framework. These advantages make the resulting ZJU‐28?MAPbBr3 single crystals possess high PLQY of ≈51.1%, a high multiphoton action cross‐sections that can rival the current highest record (measured in toluene solution), and excellent photostability. These findings liberate the excellent luminescence and nonlinear optical properties of perovskite QDs from the solution system to the solid single‐crystal system, which provide a new avenue for the exploitation of high‐performance multiphoton excited hybrid single microcrystal for future optoelectronic and micro–nano photonic integration applications.  相似文献   

19.
Perovskite light‐emitting diodes (LEDs) have recently attracted great research interest for their narrow emissions and solution processability. Remarkable progress has been achieved in green perovskite LEDs in recent years, but not blue or red ones. Here, highly efficient and spectrally stable red perovskite LEDs with quasi‐2D perovskite/poly(ethylene oxide) (PEO) composite thin films as the light‐emitting layer are reported. By controlling the molar ratios of organic salt (benzylammonium iodide) to inorganic salts (cesium iodide and lead iodide), luminescent quasi‐2D perovskite thin films are obtained with tunable emission colors from red to deep red. The perovskite/polymer composite approach enables quasi‐2D perovskite/PEO composite thin films to possess much higher photoluminescence quantum efficiencies and smoothness than their neat quasi‐2D perovskite counterparts. Electrically driven LEDs with emissions peaked at 638, 664, 680, and 690 nm have been fabricated to exhibit high brightness and external quantum efficiencies (EQEs). For instance, the perovskite LED with an emission peaked at 680 nm exhibits a brightness of 1392 cd m?2 and an EQE of 6.23%. Moreover, exceptional electroluminescence spectral stability under continuous device operation has been achieved for these red perovskite LEDs.  相似文献   

20.
Colloidal perovskite nanocrystals (PNCs) combine the outstanding optoelectronic properties of bulk perovskites with strong quantum confinement effects at the nanoscale. Their facile and low‐cost synthesis, together with superior photoluminescence quantum yields and exceptional optical versatility, make PNCs promising candidates for next‐generation optoelectronics. However, this field is still in its early infancy and not yet ready for commercialization due to several open challenges to be addressed, such as toxicity and stability. Here, the key synthesis strategies and the tunable optical properties of PNCs are discussed. The photophysical underpinnings of PNCs, in correlation with recent developments of PNC‐based optoelectronic devices, are especially highlighted. The final goal is to outline a theoretical scaffold for the design of high‐performance devices that can at the same time address the commercialization challenges of PNC‐based technology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号