首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Using interfacial reaction systems for biphasic catalytic reactions is attracting more and more attention due to their simple reaction process and low environmental pollution. Yolk–shell structured materials have broad applications in biomedicine, catalysis, and environmental remediation owing to their open channels and large space for guest molecules. Conventional methods to obtain yolk–shell mesoporous materials rely on costly and complex hard‐template strategies. In this study, a mild and convenient nonsacrificial self‐template strategy is developed to construct yolk–shell magnetic periodic mesoporous organosilica (YS‐mPMO) particles by using the unique swelling–deswelling property of low‐crosslinking density resorcinol formaldehyde (RF). The obtained YS‐mPMO microspheres possess an amphiphilic outer shell, high surface area (393 m2 g?1), uniform mesopores (2.58 nm), a tunable middle hollow space (50–156 nm), and high superparamagnetism (34.4–37.1 emu g?1). By tuning the synthesis conditions, heterojunction structured yolk–shell Fe3O4@RF@void@PMO particles with different morphologies can be produced. Owing to the amphipathy of PMO framworks, the YS‐mPMO particles show great emulsion stabilization ability and recyclability under a magnetic field. YS‐mPMO microspheres with immobilized Au nanoparticles (≈3 nm) act as both solid emulsifier for dispersing styrene (St) in water and interface catalysts for selective conversion of St into styrene oxide with a high selectivity of 86%, and yields of over 97%.  相似文献   

2.
It is of great importance to develop cost‐effective electrode materials for large‐scale use of Na‐ion batteries. Here, a binder‐free electrode based on necklace‐like structures composed of Fe3N@C yolk–shell particles as an advanced anode for Na‐ion batteries is reported. In this electrode, every Fe3N@C unit has a novel yolk–shell structure, which can accommodate the volumetric changes of Fe3N during the (de)sodiation processes for superior structural integrity. Moreover, all reaction units are threaded along the carbon fibers, guaranteeing excellent kinetics for the electrochemical reactions. As a result, when evaluated as an anode material for Na‐ion batteries, the Fe3N@C nano‐necklace electrode delivers a prolonged cycle life over 300 cycles, and achieves a high C‐rate capacity of 248 mAh g?1 at 2 A g?1.  相似文献   

3.
Yolk–shell nanostructures (YSNs) composed of a core within a hollow cavity surrounded by a porous outer shell have received tremendous research interest owing to their unique structural features, fascinating physicochemical properties, and widespread potential applications. Here, a comprehensive overview of the design, synthesis, and biomedical applications of YSNs is presented. The synthetic strategies toward YSNs are divided into four categories, including hard‐templating, soft‐templating, self‐templating, and multimethod combination synthesis. For the hard‐ or soft‐templating strategies, different types of rigid or vesicle templates are used for making YSNs. For the self‐templating strategy, a number of unconventional synthetic methods without additional templates are introduced. For the multimethod combination strategy, various methods are applied together to produce YSNs that cannot be obtained directly by only a single method. The biomedical applications of YSNs including biosensing, bioimaging, drug/gene delivery, and cancer therapy are discussed in detail. Moreover, the potential superiority of YSNs for these applications is also highlighted. Finally, some perspectives on the future research and development of YSNs are provided.  相似文献   

4.
Rational designing of the composition and structure of electrode material is of great significance for achieving highly efficient energy storage and conversion in electrochemical energy devices. Herein, MoS2/NiS yolk–shell microspheres are successfully synthesized via a facile ionic liquid‐assisted one‐step hydrothermal method. With the favorable interface effect and hollow structure, the electrodes assembled with MoS2/NiS hybrid microspheres present remarkably enhanced electrochemical performance for both overall water splitting and asymmetric supercapacitors. In particular, to deliver a current density of 10 mA cm?2, the MoS2/NiS‐based electrolysis cell for overall water splitting only needs an output voltage of 1.64 V in the alkaline medium, lower than that of Pt/C–IrO2‐based electrolysis cells (1.70 V). As an electrode for supercapacitors, the MoS2/NiS hybrid microspheres exhibit a specific capacitance of 1493 F g?1 at current density of 0.2 A g?1, and remain 1165 F g?1 even at a large current density of 2 A g?1, implying outstanding charge storage capacity and excellent rate performance. The MoS2/NiS‐ and active carbon‐based asymmetric supercapacitor manifests a maximum energy density of 31 Wh kg?1 at a power density of 155.7 W kg?1, and remarkable cycling stability with a capacitance retention of approximately 100% after 10 000 cycles.  相似文献   

5.
Micrometer‐sized spherical aggregates of Sn and Co components containing core–shell, yolk–shell, hollow nanospheres are synthesized by applying nanoscale Kirkendall diffusion in the large‐scale spray drying process. The Sn2Co3–Co3SnC0.7–C composite microspheres uniformly dispersed with Sn2Co3–Co3SnC0.7 mixed nanocrystals are formed by the first‐step reduction of spray‐dried precursor powders at 900 °C. The second‐step oxidation process transforms the Sn2Co3–Co3SnC0.7–C composite into the porous microsphere composed of Sn–Sn2Co3@CoSnO3–Co3O4 core–shell, Sn–Sn2Co3@CoSnO3–Co3O4 yolk–shell, and CoSnO3–Co3O4 hollow nanospheres at 300, 400, and 500 °C, respectively. The discharge capacity of the microspheres with Sn–Sn2Co3@CoSnO3–Co3O4 core–shell, Sn‐Sn2Co3@CoSnO3–Co3O4 yolk–shell, and CoSnO3–Co3O4 hollow nanospheres for the 200th cycle at a current density of 1 A g?1 is 1265, 987, and 569 mA h g?1, respectively. The ultrafine primary nanoparticles with a core–shell structure improve the structural stability of the porous‐structured microspheres during repeated lithium insertion and desertion processes. The porous Sn–Sn2Co3@CoSnO3–Co3O4 microspheres with core–shell primary nanoparticles show excellent cycling and rate performances as anode materials for lithium‐ion batteries.  相似文献   

6.
Manganese oxides (MnOx) are promising anode materials for lithium ion batteries, but they generally exhibit mediocre performances due to intrinsic low ionic conductivity, high polarization, and poor stability. Herein, yolk–shell nanorods comprising of nitrogen‐doped carbon (N–C) coating on manganese monoxide (MnO) coupled with zinc manganate (ZnMn2O4) nanoparticles are manufactured via one‐step carbonization of α‐MnO2/ZIF‐8 precursors. When evaluated as anodes for lithium ion batteries, MnO@ZnMn2O4/N–C exhibits an reversible capacity of 803 mAh g?1 at 50 mA g?1 after 100 cycles, excellent cyclability with a capacity of 595 mAh g?1 at 1000 mAg?1 after 200 cycles, as well as better rate capability compared with those non‐N–C shelled manganese oxides (MnOx). The outstanding electrochemical performance is attributed to the unique yolk–shell nanorod structure, the coating effect of N–C and nanoscale size.  相似文献   

7.
Sodium‐ion batteries (SIBs) have been recognized as the promising alternatives to lithium‐ion batteries for large‐scale applications owing to their abundant sodium resource. Currently, one significant challenge for SIBs is to explore feasible anodes with high specific capacity and reversible pulverization‐free Na+ insertion/extraction. Herein, a facile co‐engineering on polymorph phases and cavity structures is developed based on CoMo‐glycerate by scalable solvothermal sulfidation. The optimized strategy enables the construction of CoMoOxSy with synergized partially sulfidized amorphous phase and yolk–shell confined cavity. When developed as anodes for SIBs, such CoMoOxSy electrodes deliver a high reversible capacity of 479.4 mA h g?1 at 200 mA g?1 after 100 cycles and a high rate capacity of 435.2 mA h g?1 even at 2000 mA g?1, demonstrating superior capacity and rate capability. These are attributed to the unique dual merits of the anodes, that is, the elastic bountiful reaction pathways favored by the sulfidation‐induced amorphous phase and the sodiation/desodiation accommodatable space benefits from the yolk–shell cavity. Such yolk–shell nano‐battery materials are merited with co‐tunable phases and structures, facile scalable fabrication, and excellent capacity and rate capability in sodium storage. This provides an opportunity to develop advanced practical electrochemical sodium storage in the future.  相似文献   

8.
Yolk–shell nanoreactors have received considerable interest for use in catalysis. However, the controlled synthesis of continuous crystalline shells without imperfections or cracks remains challenging. Here, a strategy for the synthesis of yolk–shell metal nanoparticles@covalent organic framework (MNPs@COF) nanoreactors by using MNPs@ZIF‐8 core–shell nanostructures as a self‐template is designed and developed. The COF shell is formed through an amorphous‐to‐crystalline transformation process of a polyimine shell in a mildly acidic solution, while the ZIF‐8 is etched in situ, generating a void space between the MNPs core and the COF shell. With the protection of the COF shell, multiple ligand‐free MNPs are confined inside of the hollow nanocages. Importantly, the synthetic strategy can be generalized to engineer the functions and properties of the designed yolk–shell nanocages by varying the structure of the COF shell and/or the composition of the core MNPs. Representative Pd@H‐TpPa yolk–shell nanocages with active Pd NP cores and permeable TpPa shells exhibit high catalytic activity and stability in the reduction of 4‐nitrophenol by NaBH4 at room temperature.  相似文献   

9.
Here, a novel, versatile synthetic strategy to fabricate a yolk–shell structured material that can encapsulate virtually any functional noble metal or metal oxide nanocatalysts of any morphology in a free suspension fashion is reported. This strategy also enables encapsulation of more than one type of nanoparticle inside a single shell, including paramagnetic iron oxide used for magnetic separation. The mesoporous organosilica shell provides efficient mass transfer of small target molecules, while serving as a size exclusion barrier for larger interfering molecules. Major structural and functional advantages of this material design are demonstrated by performing three proof‐of‐concept applications. First, effective encapsulation of plasmonic gold nanospheres for localized photothermal heating and heat‐driven reaction inside the shell is shown. Second, hydrogenation catalysis is demonstrated under spatial confinement driven by palladium nanocubes. Finally, the surface‐enhanced Raman spectroscopic detection of model pollutant by gold nanorods is presented for highly sensitive environmental sensing with size exclusion.  相似文献   

10.
Owing to the high theoretical specific capacity (1675 mA h g?1) and low cost, lithium–sulfur (Li–S) batteries offer advantages for next‐generation energy storage. However, the polysulfide dissolution and low electronic conductivity of sulfur cathodes limit the practical application of Li–S batteries. To address such issues, well‐designed yolk–shelled carbon@Fe3O4 (YSC@Fe3O4) nanoboxes as highly efficient sulfur hosts for Li–S batteries are reported here. With both physical entrapment by carbon shells and strong chemical interaction with Fe3O4 cores, this unique architecture immobilizes the active material and inhibits diffusion of the polysulfide intermediates. Moreover, due to their high conductivity, the carbon shells and the polar Fe3O4 cores facilitate fast electron/ion transport and promote continuous reactivation of the active material during the charge/discharge process, resulting in improved electrochemical utilization and reversibility. With these merits, the S/YSC@Fe3O4 cathodes support high sulfur content (80 wt%) and loading (5.5 mg cm?2) and deliver high specific capacity, excellent rate capacity, and long cycling stability. This work provides a new perspective to design a carbon/metal‐oxide‐based yolk–shelled framework as a high sulfur‐loading host for advanced Li–S batteries with superior electrochemical properties.  相似文献   

11.
12.
The development of oxygen reduction reaction (ORR) electrocatalysts based on earth-abundant nonprecious materials is critically important for sustainable large-scale applications of fuel cells and metal–air batteries. Herein, a hetero-single-atom (h-SA) ORR electrocatalyst is presented, which has atomically dispersed Fe and Ni coanchored to a microsized nitrogen-doped graphitic carbon support with unique trimodal-porous structure configured by highly ordered macropores interconnected through mesopores. Extended X-ray absorption fine structure spectra confirm that Fe- and Ni-SAs are affixed to the carbon support via Fe N4 and Ni N4 coordination bonds. The resultant Fe/Ni h-SA electrocatalyst exhibits an outstanding ORR activity, outperforming SA electrocatalysts with only Fe- or Ni-SAs, and the benchmark Pt/C. The obtained experimental results indicate that the achieved outstanding ORR performance results from the synergetic enhancement induced by the coexisting Fe N4 and Ni N4 sites, and the superior mass-transfer capability promoted by the trimodal-porous-structured carbon support.  相似文献   

13.
14.
Herein, a new type of cobalt encapsulated nitrogen‐doped carbon (Co@NC) nanostructure employing ZnxCo1?x(C3H4N2) metal–organic framework (MOF) as precursor is developed, by a simple, ecofriendly, solvent‐free approach that utilizes a mechanochemical coordination self‐assembly strategy. Possible evolution of ZnxCo1?x(C3H4N2) MOF structures and their conversion to Co@NC nanostructures is established from an X‐ray diffraction technique and transmission electron microscopy analysis, which reveal that MOF‐derived Co@NC core–shell nanostructures are well ordered and highly crystalline in nature. Co@NC–MOF core–shell nanostructures show excellent catalytic activity for the oxygen reduction reaction (ORR), with onset potential of 0.97 V and half‐wave potential of 0.88 V versus relative hydrogen electrode in alkaline electrolyte, and excellent durability with zero degradation after 5000 potential cycles; whereas under similar experimental conditions, the commonly utilized Pt/C electrocatalyst degrades. The Co@NC–MOF electrocatalyst also shows excellent tolerance to methanol, unlike the Pt/C electrocatalyst. X‐ray photoelectron spectroscopy (XPS) analysis shows the presence of ORR active pyridinic‐N and graphitic‐N species, along with CoNx? Cy and Co? Nx ORR active (M–N–C) sites. Enhanced electron transfer kinetics from nitrogen‐doped carbon shell to core Co nanoparticles, the existence of M–N–C active sites, and protective NC shells are responsible for high ORR activity and durability of the Co@NC–MOF electrocatalyst.  相似文献   

15.
16.
17.
Yolk–shell structured micro/nano‐sized materials have broad and important applications in different areas due to their unique spatial configurations. In this study, yolk–shell structured Co3O4@Co3O4 is prepared using a simple and scalable hydrothermal reaction, followed by a calcination process. Then, CoxCu1?xCo2O4@CoyCu1?yCo2O4 microspheres are synthesized via adsorption and calcination processes using the as‐prepared Co3O4@Co3O4 as the precursor. A possible formation mechanism of the yolk–shell structures is proposed based on the characterization results, which is different from those of yolk–shell structures in previous study. For the first time, the catalytic activity of yolk–shell structured catalysts in ammonia borane (AB) hydrolysis is studied. It is discovered that the yolk–shell structured CoxCu1?xCo2O4@CoyCu1?yCo2O4 microspheres exhibit high performance with a turnover frequency (TOF) of 81.8 molhydrogen min?1 molcat?1. This is one of the highest TOF values reported for a noble‐metal‐free catalyst in the literature. Additionally, the yolk–shell structured CoxCu1?xCo2O4@CoyCu1?yCo2O4 microspheres are highly stable and reusable. These yolk–shell structured CoxCu1?xCo2O4@CoyCu1?yCo2O4 microsphere is a promising catalyst candidate in AB hydrolysis considering the excellent catalytic behavior and low cost.  相似文献   

18.
19.
Catalysts at the air cathode for oxygen reduction and evolution reactions are central to the stability of rechargeable metal–air batteries, an issue that is gaining increasing interest in recent years. Herein, a highly durable and efficient carbide‐based bifunctional catalyst consisting of iron–molybdenum carbide (Fe3Mo3C) and IrMn nanoalloys is demonstratred. This carbide is chemically stable in alkaline media and over the potential range of an air cathode. More importantly, Fe3Mo3C is very active for oxygen reduction reaction (ORR) in alkaline media. Fe3Mo3C supported IrMn as a bifunictional catalysts exhibits superior catalytic performance than the state of the art ORR catalyst (Pt/C) and the oxygen evolution reaction catalyst (Ir/C). IrMn/Fe3Mo3C enables Zn–air batteries to achieve long‐term cycling performance over 200 h with high efficiency. The extraordinarily high performance of IrMn/Fe3Mo3C bifunictional catalyst provides a very promising alternative to the conventional Pt/C and Ir/C catalyst for an air cathode in alkaline electrolyte.  相似文献   

20.
Metal–organic frameworks (MOFs) and MOF‐derived materials have recently attracted considerable interest as alternatives to noble‐metal electrocatalysts. Herein, the rational design and synthesis of a new class of Co@N‐C materials (C‐MOF‐C2‐T) from a pair of enantiotopic chiral 3D MOFs by pyrolysis at temperature T is reported. The newly developed C‐MOF‐C2‐900 with a unique 3D hierarchical rodlike structure, consisting of homogeneously distributed cobalt nanoparticles encapsulated by partially graphitized N‐doped carbon rings along the rod length, exhibits higher electrocatalytic activities for oxygen reduction and oxygen evolution reactions (ORR and OER) than that of commercial Pt/C and RuO2, respectively. Primary Zn–air batteries based on C‐MOF‐900 for the oxygen reduction reaction (ORR) operated at a discharge potential of 1.30 V with a specific capacity of 741 mA h gZn–1 under 10 mA cm–2. Rechargeable Zn–air batteries based on C‐MOF‐C2‐900 as an ORR and OER bifunctional catalyst exhibit initial charge and discharge potentials at 1.81 and 1.28 V (2 mA cm–2), along with an excellent cycling stability with no increase in polarization even after 120 h – outperform their counterparts based on noble‐metal‐based air electrodes. The resultant rechargeable Zn–air batteries are used to efficiently power electrochemical water‐splitting systems, demonstrating promising potential as integrated green energy systems for practical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号