首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mechanically durable transparent electrodes are needed in flexible optoelectronic devices to realize their long‐term stable functioning, for applications in various fields such as energy, healthcare, and soft robotics. Several promising transparent electrodes based on nanomaterials have been previously reported to replace the conventional and fragile indium‐tin oxide (ITO); however, obtaining feasible printed transparent electrodes for ultraflexible devices with a multistack structure is still a great challenge. Here, a printed ultrathin (uniform thickness of 100 nm) Ag mesh transparent electrode is demonstrated, simultaneously achieving high conductance, high transparency, and good mechanical properties. It shows a 17 Ω sq?1 sheet resistance (Rsh) with 93.2% transmittance, which surpasses the performance of sputtered ITO electrodes and other ultrathin Ag mesh transparent electrodes. The conductance is stable after 500 cycles of 100% stretch/release deformation, with an insignificant increase (10.6%) in Rsh by adopting a buckling structure. Furthermore, organic photovoltaics (OPVs) using our Ag mesh transparent electrodes achieve a power conversion efficiency of 8.3%, which is comparable to the performance of ITO‐based OPVs.  相似文献   

2.
A simple cryo‐transfer method to fabricate ultrathin, stretchable, and conformal epidermal electrodes based on a combination of silver nanowires (AgNWs) network and elastomeric polymers is developed. This method can temporarily enable the soft elastomers with much higher elastic modulus and dimensional contraction through exploiting their glass‐transition behaviors. During this process, a much higher Von Mises stress can be loaded on AgNWs than usual, and the generated strong grip force can facilitate the complete transfer of AgNWs. Afterward, the thawed AgNWs and elastomer composites quickly recover to their soft state at room temperature. The obtained ultrathin and soft electrode with a thickness of 8.4 µm and transmittance of 90.8% at a sheet resistance of 13.2 Ω sq?1 can tolerate a stretching strain of 70% and 50 000 repeated bending cycles, which meets rigorous requirements of epidermal applications. The as‐prepared epidermal electrodes are effective and comfortable for electrophysiological signal monitoring, and while showing excellent performance exceeding the commercialized gel electrodes.  相似文献   

3.
Thin insulating layers are used to modulate a depletion region at the source of a thin‐film transistor. Bottom contact, staggered‐electrode indium gallium zinc oxide transistors with a 3 nm Al2O3 layer between the semiconductor and Ni source/drain contacts, show behaviors typical of source‐gated transistors (SGTs): low saturation voltage (VD_SAT ≈ 3 V), change in VD_SAT with a gate voltage of only 0.12 V V?1, and flat saturated output characteristics (small dependence of drain current on drain voltage). The transistors show high tolerance to geometry: the saturated current changes only 0.15× for 2–50 µm channels and 2× for 9‐45 µm source‐gate overlaps. A higher than expected (5×) increase in drain current for a 30 K change in temperature, similar to Schottky‐contact SGTs, underlines a more complex device operation than previously theorized. Optimization for increasing intrinsic gain and reducing temperature effects is discussed. These devices complete the portfolio of contact‐controlled transistors, comprising devices with Schottky contacts, bulk barrier, or heterojunctions, and now, tunneling insulating layers. The findings should also apply to nanowire transistors, leading to new low‐power, robust design approaches as large‐scale fabrication techniques with sub‐nanometer control mature.  相似文献   

4.
An electroactive and transparent haptic interface having a rectangular void pattern creates tunable surface textures by controlling the wavelength and amplitude of independent void‐lines. To make an active tactile surface, the transparent haptic interface employs a silver nanowire (AgNW) electrode to be compliant with the deformed elastomer surface. Here, the dielectric elastomer is newly blended with polydimethylsiloxane and Ecoflex prepolymer to simultaneously control the mechanical stiffness and transparency. The relative resistance of the AgNW electrode on a single void line is nearly unchanged under bending test, confirming the high stretchability and conductivity of the nanowire‐networked electrode. The optical transparencies are 92–85%, depending on the ratio of the Ecoflex solution. Transparency values decreas by 7 and 16% after coating with AgNWs at densities of 30 and 140 mg m?2, respectively. Using EP31, the void line is deformed by 90 µm under a field intensity of 13.0 V µm?1. The haptic surface is successfully controlled by applying voltage, which produces four different surface textures, from relatively smooth to rough feeling, depending on the distance between deformed void lines. This haptic interface can be applied to diverse display systems as an external add‐on screen and will help to realize programmable surface textures in the future.  相似文献   

5.
Here, room‐temperature solution‐processed inorganic p‐type copper iodide (CuI) thin‐film transistors (TFTs) are reported for the first time. The spin‐coated 5 nm thick CuI film has average hole mobility (µFE) of 0.44 cm2 V?1 s?1 and on/off current ratio of 5 × 102. Furthermore, µFE increases to 1.93 cm2 V?1 s?1 and operating voltage significantly reduces from 60 to 5 V by using a high permittivity ZrO2 dielectric layer replacing traditional SiO2. Transparent complementary inverters composed of p‐type CuI and n‐type indium gallium zinc oxide TFTs are demonstrated with clear inverting characteristics and voltage gain over 4. These outcomes provide effective approaches for solution‐processed inorganic p‐type semiconductor inks and related electronics.  相似文献   

6.
A novel realization of microtubular direct methanol fuel cells (µ DMFC) with ultrahigh power output is reported by using “rolled‐up” nanotechnology. The microtube (Pt‐RuO2‐RUMT) is prepared by rolling up Ru2O layers coated with magnetron‐sputtered Pt nanoparticles (cat‐NPs). The µ DMFC is fabricated by embedding the tube in a fluidic cell. The footprint of per tube is as small as 1.5 × 10?4 cm2. A power density of ≈257 mW cm?2 is obtained, which is three orders of magnitude higher than the present microsized DFMCs. Atomic layer deposition technique is applied to alleviate the methanol crossover as well as improve stability of the tube, sustaining electrolyte flow for days. A laminar flow driven mechanism is proposed, and the kinetics of the fuel oxidation depends on a linear‐diffusion‐controlled process. The electrocatalytic performance on anode and cathode is studied by scanning both sides of the tube wall as an ex situ working electrode, respectively. This prototype µ DFMC is extremely interesting for integration with micro‐ and nanoelectronics systems.  相似文献   

7.
Y Zhao  F Chen  Q Shen  L Zhang 《Applied optics》2012,51(25):6245-6251
In this paper, the performance of solar cells with graphene transparent electrodes is compared with cells using conventional indium tin oxide (ITO) electrodes, and it is demonstrated the optical absorption of solar cells with bare graphene structure is worse than that of bare ITO structure because of the higher refractive index of graphene. To enhance the light trapping of graphene-based thin-film solar cells, a simple two-layer SiO2/SiC structure is proposed as antireflection coatings deposited on top of graphene transparent electrodes, and the thickness of each layer is optimized by differential evolution in order to enhance the optical absorption of a-Si:H thin-film solar cells to the greatest degree. The optimization results demonstrate the optimal SiO2/SiC/graphene structure can obtain 37.30% enhancement with respect to bare ITO structure, which has obviously exceeded the light-trapping enhancement of 34.15% for the optimal SiO2/SiC/ITO structure. Therefore, with the aid of the light-trapping structure, the graphene films are a very promising indium-free transparent electrode substitute for the conventional ITO electrode for use in cost-efficient thin-film silicon solar cells.  相似文献   

8.
Due to the simultaneously superior optical transmittance and low electrical resistivity, transparent conductive electrodes play a significant role in semiconductor electronics. To enhance the electrical properties of these films, one approach is thickness increment which degrades the optical properties. However, a preferred way to optimize both electrical and optical properties of these layers is to introduce a buffer layer. In this work, the effects of buffer layer and film thickness on the structural, electrical, optical and morphological properties of AZO thin films are investigated. Al-doped zinc oxide (AZO) is prepared at various thicknesses of 100 to 300 nm on the bare and 100 nm-thick indium tin oxide (ITO) coated glass substrates by radio frequency sputtering. Results demonstrate that by introducing ITO as a buffer layer, the average values of sheet resistance and strain within the film are decreased (about 76 and 3.3 times lower than films deposited on bare glasses), respectively. Furthermore, the average transmittance of ITO/AZO bilayer is improved nearly 10% regarding single AZO thin film. This indicates that bilayer thin films show better physical properties rather than conventional monolayer thin films. As the AZO film thickness increases, the interplanar spacing, d(002), strain within the film and compressive stress of the film in the hexagonal lattice, decreases indicating the higher yield of AZO crystal. Moreover, with the growth in film thickness, carrier concentration and optical band gap (Eg) of AZO film are increased from 4.62?×?1019 to 8.21?×?1019 cm?3 and from 3.55 to 3.62 eV, respectively due to the Burstein-Moss (BM) effect. The refractive index of AZO thin film is obtained in the range of 2.24–2.26. With the presence of ITO buffer layer, the AZO thin film exhibits a resistivity as low as 6?×?10?4 Ω cm, a sheet resistance of 15 Ω/sq and a high figure of merit (FOM) of 1.19?×?104 (Ω cm)?1 at a film thickness of 300 nm. As a result, the quality of AZO thin films deposited on ITO buffer layer is found to be superior regarding those grown on a bare glass substrate. This study has been performed over these two substrates because of their significant usage in the organic light emitting diodes and photovoltaic applications as an enhanced carrier injecting electrodes.  相似文献   

9.
《Materials Letters》2005,59(8-9):953-958
Li0.9Mn0.9Ni0.1O2 has been prepared by an ion-exchange process and evaluated as the positive electrode material for lithium-ion battery application. The particles of the oxide have been subjected to surface modification by coating a thin layer of ZnO. Both the ZnO coated and bare samples have been characterized by chemical analysis, powder X-ray diffraction, scanning electron microscopy, EDAX, EDS-dot mapping, cyclic voltammetry, charge–discharge cycling and AC impedance spectroscopy. The physicochemical studies suggest the formation of a layered structure in the oxide with a uniformly dispersed ZnO coating on fine particles. The electrochemical studies suggest a stable discharge capacity of 210 mA h g−1 for ZnO coated oxide over about 50 cycles tested in the studies. By contrast, the capacity of bare oxide decreases rapidly on cycling. The enhanced performance of these electrodes is also reflected in AC impedance studies.  相似文献   

10.
Heterostructures based on graphene and other 2D atomic crystals exhibit fascinating properties and intriguing potential in flexible optoelectronics, where graphene films function as transparent electrodes and other building blocks are used as photoactive materials. However, large‐scale production of such heterostructures with superior performance is still in early stages. Herein, for the first time, the preparation of a submeter‐sized, vertically stacked heterojunction of lead iodide (PbI2)/graphene on a flexible polyethylene terephthalate (PET) film by vapor deposition of PbI2 on graphene/PET substrate at a temperature lower than 200 °C is demonstrated. This film is subsequently used to fabricate bendable graphene/PbI2/graphene sandwiched photodetectors, which exhibit high responsivity (45 A W?1 cm?2), fast response (35 µs rise, 20 µs decay), and high‐resolution imaging capability (1 µm). This study may pave a facile pathway for scalable production of high‐performance flexible devices.  相似文献   

11.
In order to investigate the possible application of ZnO films as a transparent conducting oxide (TCO) electrode for AC PDP, ZnO:Al films were prepared by DC magnetron sputtering method. The effects of discharge power and doping concentration on the structural and electrical properties of ZnO films were mainly studied experimentally. Five-inch PDP cells using either a ZnO:Al or indium tin oxide (ITO) electrode were also fabricated separately under the same manufacturing conditions. The luminous properties of both the PDP cells were measured and compared with each other.By doping the ZnO target with 2 wt% of Al2O3, the film deposited at a discharge power of 40 W resulted in the minimum resistivity of 8.5 × 10−4 Ω-cm and a transmittance of 91.7%. However, a high doping concentration of 3 wt% of Al2O3 and excessive sputtering power over 40 W may induce high defect density and limit the growth of small grains. Although the luminance and luminous efficiency of the cell using ZnO:Al are lower than those of the cell with the ITO electrode by about 10%, these values are sufficient enough to be considered for the normal operation of AC PDP.  相似文献   

12.
Molybdenum disulfide (MoS2) is a promising electrode material for electrochemical energy storage owing to its high theoretical specific capacity and fascinating 2D layered structure. However, its sluggish kinetics for ionic diffusion and charge transfer limits its practical applications. Here, a promising strategy is reported for enhancing the Na+‐ion charge storage kinetics of MoS2 for supercapacitors. In this strategy, electrical conductivity is enhanced and the diffusion barrier of Na+ ion is lowered by a facile phosphorus‐doping treatment. Density functional theory results reveal that the lowest energy barrier of dilute Na‐vacancy diffusion on P‐doped MoS2 (0.11 eV) is considerably lower than that on pure MoS2 (0.19 eV), thereby signifying a prominent rate performance at high Na intercalation stages upon P‐doping. Moreover, the Na‐vacancy diffusion coefficient of the P‐doped MoS2 at room temperatures can be enhanced substantially by approximately two orders of magnitude (10?6–10?4 cm2 s?1) compared with pure MoS2. Finally, the quasi‐solid‐state asymmetrical supercapacitor assembled with P‐doped MoS2 and MnO2, as the positive and negative electrode materials, respectively, exhibits an ultrahigh energy density of 67.4 W h kg?1 at 850 W kg?1 and excellent cycling stability with 93.4% capacitance retention after 5000 cycles at 8 A g?1.  相似文献   

13.
W Hou  C Stark  S You  L Zhao  T Detchprohm  C Wetzel 《Applied optics》2012,51(23):5596-5600
In search of a better transparent contact to p-GaN, we analyze various metal/indium-tin-oxide (ITO) (Ag/ITO, AgCu/ITO, Ni/ITO, and NiZn/ITO) contact schemes and compare to Ni/Au, NiZn/Ag, and ITO. The metal layer boosts conductivity while the ITO thickness can be adjusted to constructive transmission interference on GaN that exceeds extraction from bare GaN. We find a best compromise for an Ag/ITO (3 nm/67 nm) ohmic contact with a relative transmittance of 97% of the bare GaN near 530?nm and a specific contact resistance of 0.03 Ω·cm2. The contact proves suitable for green light-emitting diodes in epi-up geometry.  相似文献   

14.
2D MXenes have shown great promise in electrochemical and electromagnetic shielding applications. However, their potential use in electronic devices is significantly less explored. The unique combination of metallic conductivity and hydrophilic surface suggests that MXenes can also be promising in electronics and sensing applications. Here, it is shown that metallic Ti3C2 MXene with work function of 4.60 eV can make good electrical contact with both zinc oxide (ZnO) and tin monoxide (SnO) semiconductors, with negligible band offsets. Consequently, both n‐type ZnO and p‐type SnO thin‐film transistors (TFTs) have been fabricated entirely using large‐area MXene (Ti3C2) electrical contacts, including gate, source, and drain. The n‐ and p‐type TFTs show balanced performance, including field‐effect mobilities of 2.61 and 2.01 cm2 V?1 s?1 and switching ratios of 3.6 × 106 and 1.1 × 103, respectively. Further, complementary metal oxide semiconductor (CMOS) inverters are demonstrated. The CMOS inverters show large voltage gain of 80 and excellent noise margin of 3.54 V, which is 70.8% of the ideal value. Moreover, the operation of CMOS inverters is shown to be very stable under a 100 Hz square waveform input. The current results suggest that MXene (Ti3C2) can play an important role as contact material in nanoelectronics.  相似文献   

15.
Triboelectric nanogenerators (TENGs) are widely applied to self‐powered devices and force sensors. TENGs consist of the electrode‐layer frequently made of high‐cost conductors (Ag, Au, ITO) and the tribo‐layer of rigid negative‐triboelectricity fluoropolymers (PTFE, FEP). The surface morpholoy is studied for enhancing performance. Here, a high‐performance Al/PDMS‐TENG is proposed with a complex morphology of overlapped deep two‐height microneedles (OL‐DTH‐MN) fabricated by the integrated process of low‐cost CO2 laser ablation and PDMS casting for self‐powered devices and high‐sensitivity force/pressure sensors. The high open‐circuit voltage and short‐circuit current of the OL‐DTH‐MN‐TENG are 167 V and 129.3 µA. Also, the sensitivity of the force/pressure sensor of the OL‐DTH‐MN‐TENG is very high, 1.03 V N?1 and about 3.11 V kPa?1, at an area of 30 cm2 that is much higher than the sensitivity of about 0.18–0.414 V N?1 and 0.013–0.29 V kPa?1 of conventional TENG sensors. Meanwhile, the high‐performance OL‐DTH‐MN‐TENG not only exhibits the energy storage capability of charging a 0.1 µF capacitor to 2.75 V at 1.19 s, to maximum 3.22 V, but also activates various self‐powered devices including lighting colorful 226 LEDs connected in series, the “2020‐ME‐NCKU” advertising board, a calculator and a temperature sensor. Numerical simulation is also performed to support the experiments.  相似文献   

16.
In situ monitoring of hydrogen peroxide (H2O2) during its production process is needed. Here, an electrochemical H2O2 sensor with a wide linear current response range (concentration: 5 × 10?8 to 5 × 10?2 m ), a low detection limit (32.4 × 10?9 m ), and a high sensitivity (568.47 µA mm ?1 cm?2) is developed. The electrocatalyst of the sensor consists of cobalt nanoparticles and atomic Co‐Nx moieties anchored on nitrogen doped carbon nanotube arrays (Co‐N/CNT), which is obtained through the pyrolysis of the sandwich‐like urea@ZIF‐67 complex. More cobalt nanoparticles and atomic Co‐Nx as active sites are exposed during pyrolysis, contributing to higher electrocatalytic activity. Moreover, a portable screen‐printed electrode sensor is constructed and demonstrated for rapidly detecting (cost ≈40 s) H2O2 produced in microbial fuel cells with only 50 µL solution. Both the synthesis strategy and sensor design can be applied to other energy and environmental fields.  相似文献   

17.
For Si anode materials used for lithium ion batteries (LIBs), developing an effective solution to overcome their drawbacks of large volume change and poor electronic conductivity is highly desirable. Here, the composites of ZnO‐incorporated and carbon‐coated silicon/porous‐carbon nanofibers (ZnO‐Si@C‐PCNFs) are designed and synthesized via a traditional electrospinning method. The prepared ZnO‐Si@C‐PCNFs can obviously overcome these two drawbacks and provide excellent LIB performance with excellent rate capability and stable long cycling life of 1000 cycles with reversible capacity of 1050 mA h g?1 at 800 mA g?1. Meanwhile, anodes of ZnO‐Si@C‐PCNFs attached with Ag particles display enhanced LIB performance, maintaining an average capacity of 920 mA h g?1 at a large current of 1800 mA g?1 even for 1000 cycles with negligible capacity loss and excellent reversibility. In addition, the assembling method with important practical significance for a simple pouch full cell is designed and used to evaluate the active materials. The Ag/ZnO‐Si@C‐PCNFs are prelithiated and assembled in full cells using LiNi0.5Co0.2Mn0.3O2(NCM523) as cathodes, exhibiting higher energy density (230 W h kg?1) of 18% than that of 195 W h kg?1 for commercial graphite//NCM523 full pouch cells. Importantly, the comprehensive mechanisms of enhanced electrochemical kinetics originating from ZnO‐incorporation and Ag‐attachment are revealed in detail.  相似文献   

18.
We report a new method for selective detection of d(+)-glucose using a copper nanoparticles (Cu-NPs) attached zinc oxide (ZnO) film coated electrode. The ZnO and Cu-NPs were electrochemically deposited onto indium tin oxide (ITO) coated glass electrode and glassy carbon electrode (GCE) by layer-by-layer. In result, Cu-NPs/ZnO composite film topography was characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM), respectively. SEM and AFM confirmed the presence of nanometer sized Cu-NPs/ZnO composite particles on the electrode surface. In addition, X-ray diffraction pattern revealed that Cu-NPs and ZnO films were attached onto the electrode surface. Indeed, the Cu-NPs/ZnO composite modified electrode showed excellent electrocatalytic activity for glucose oxidation in alkaline (0.1 M NaOH) solution. Further, we utilized the Cu-NPs/ZnO composite modified electrode as an electrochemical sensor for detection of glucose. This glucose sensor showed a linear relationship in the range from 1 × 10? 6 M to 1.53 × 10? 3 M and the detection limit (S/N = 3) was found to be 2 × 10? 7 M. The Cu-NPs/ZnO composite as a non-enzymatic glucose sensor presents a number of attractive features such as high sensitivity, stability, reproducibility, selectivity and fast response. The applicability of the proposed method to the determination of glucose in human urine samples was demonstrated with satisfactory results.  相似文献   

19.
All‐solution‐processed pure formamidinium‐based perovskite light‐emitting diodes (PeLEDs) with record performance are successfully realized. It is found that the FAPbBr3 device is hole dominant. To achieve charge carrier balance, on the anode side, PEDOT:PSS 8000 is employed as the hole injection layer, replacing PEDOT:PSS 4083 to suppress the hole current. On the cathode side, the solution‐processed ZnO nanoparticle (NP) is used as the electron injection layer in regular PeLEDs to improve the electron current. With the smallest ZnO NPs (2.9 nm) as electron injection layer (EIL), the solution‐processed PeLED exhibits a highest forward viewing power efficiency of 22.3 lm W?1, a peak current efficiency of 21.3 cd A?1, and an external quantum efficiency of 4.66%. The maximum brightness reaches a record 1.09 × 105 cd m?2. A record lifetime T50 of 436 s is achieved at the initial brightness of 10 000 cd m?2. Not only do PEDOT:PSS 8000 HIL and ZnO NPs EIL modulate the injected charge carriers to reach charge balance, but also they prevent the exciton quenching at the interface between the charge injection layer and the light emission layer. The subbandgap turn‐on voltage is attributed to Auger‐assisted energy up‐conversion process.  相似文献   

20.
An air‐stable transparent conductive film with “quasi‐freestanding” graphene supported on horizontal single walled carbon nanotubes (SWCNTs) arrays is fabricated. The sheet resistance of graphene films stacked via layer‐by‐layer transfer (LBL) on quartz, and modified by 1‐Pyrenebutyric acid N‐hydroxysuccinimide ester (PBASE), is reduced from 273 Ω/sq to about 76 Ω/sq. The electrical properties are stable to heat treatment (up to 200 ºC) and ambient exposure. Organic light‐emitting diodes (OLEDs) constructed of this carbon anode (T ≈ 89.13% at 550 nm) exhibit ≈88% power efficiency of OLEDs fabricated on an ITO anode (low turn on voltage ≈3.1 eV, high luminance up to ≈29 490 cd/m2, current efficiency ≈14.7 cd/A). Most importantly, the entire graphene‐on‐SWCNT hybrid electrodes can be transferred onto plastic (PET) forming a highly‐flexible OLED device, which continues to function without degradation in performance at bending angles >60°.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号