首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
羟基硅油对Mg(OH)2高填充HDPE力学性能的影响   总被引:20,自引:1,他引:19  
王艳丽  张勇 《中国塑料》2000,14(2):64-69
研究了超细Mg(OH)2填料用量、填料表面改性、羟基硅油用量等对于高填充高密度聚乙烯(HDPE)力学性能的影响。当超细Mg(OH)填料用量达到70份时,HDPE复合材料表现出明显的脆性拉伸断裂行为,用硅烷偶联剂物钛酸酯对超细Mg(OH)2填料进行表面改性,能提高高填充HDPE的拉伸强度,而对于断裂伸长率的影响较小,羟基硅油能有效改善高填充HDPE的韧性。在140份的高填充量下,用羟基硅油处理钛酸酯  相似文献   

2.
研究了芳烃油和环烷烃油对充油铁系1,2-聚丁二烯橡胶性能的影响。结果表明,基础胶充油后门尼粘度值下降,可塑性增加,混炼行为变佳;填充芳烃油比填充环烷烃油的橡胶在拉伸强度、撕裂强度、伸长率和生胶门尼值等方面均有所提高;充油后虽然硫化胶硬度降低,但是生热和耐磨性能提高。填充芳烃油可适当提高硫化胶的抗湿滑性,但滚动阻力也升高。环烷烃油可降低硫化胶的滚动阻力。充油可适当改善胶料的抗老化性能。  相似文献   

3.
Filler‐filled natural rubber (NR) vulcanizates were prepared by conventional laboratory‐sized two roll mills and cured using sulfuric system. The effect of thermal aging on physical properties and thermogravimetric analysis (TGA) of oil palm ash (OPA) and commercial fillers (i.e., silica vulkasil C and carbon black N330)‐filled NR vulcanizates at respective optimum loading and equal loading were studied. Before aging, the OPA‐filled vulcanizates showed comparable optimum strength as carbon black‐filled vulcanizates. The hardening of aged filler‐filled NR vulcanizates happened after aging, thereby tensile strength and elongation at break reduced while the modulus increased. Fifty phr carbon black‐filled vulcanizates showed better retention in tensile properties as compared to silica (10 phr) and OPA (1 phr). This was attributed to the addition of different filler loading and this finding was further explained when equal loading of filler‐filled vulcanizates was studied. Fourier transform infra‐red analysis showed chemical structure had changed and tensile fractured surface exhibited smooth appearance due to the deterioration in tensile properties after aging. TGA also denoted the thermal stability was depending on the amount of filler loading. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 4474–4481, 2013  相似文献   

4.
采用3D打印方式制备降解左旋聚乳酸(PLLA)样品,通过冲击及拉伸试验研究不同打印条件对样品冲击强度、拉伸强度、拉伸模量及断裂伸长率的影响。结果表明,随着打印填充密度的增加,样品的冲击强度、拉伸强度及拉伸模量增大,断裂伸长率先增后减;随着打印速度的增加,样品的拉伸强度和拉伸模量增大,冲击强度及断裂伸长率减小;随着打印温度的增加,样品的冲击强度、拉伸强度和拉伸模量增大,断裂伸长率减小;打印填充密度、打印速度、打印温度分别为70 %、100 mm/s、210 ℃时,样品的综合性能最佳。  相似文献   

5.
Due to their widespread applications, the production and consumption of plastics have increased sharply and also brought about a lot of waste. However, only one‐fourth of plastic solid waste is effectively recycled, and the rest is almost entirely disposed in landfills. In this article, high performance synthetic paper used for printing was successfully prepared from ultrahigh molecular weight polyethylene waste adopting thermally induced phase separation method. Silicon dioxide was added as filler and mineral oil was used as diluent. Whiteness, chemical resistance, tensile strength, thermal stability, surface morphology, and inkjet print of synthetic paper was investigated, respectively. It is indicated that the resulting synthetic paper possesses excellent printing effect. Its whiteness equally distributes around 80% and the highest tensile strength is up to 5.5 MPa. They also reveal good resistance to chemical corrosion and have good shape maintenance. As a result, the preparation of high performance synthetic paper for industrial applicability is expected to perform by recycling plastics waste. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44159.  相似文献   

6.
通过在阻燃高抗冲聚苯乙烯(HIPS)材料中加入不同用量的针状硅灰石的试验研究,发现一定用量的硅灰石可提高阻燃HIPS材料的断裂伸长率、弯曲弹性模量、耐热性和加工性能,而对阻燃HIPS材料的拉伸强度、冲击韧性和阻燃性能基本上无影响。扫描电子显微镜观察显示,硅灰石以一定长度的针状细条嵌入HIPS基体中,起到部分玻璃纤维的改性作用,阻燃HIPS材料的冲击断面仍为韧性断裂。  相似文献   

7.
A series of polyaniline (Pani)‐filled chain extended polyurethanes (PUs) were prepared by condensation polymerization of castor oil with methylene diisocyanate (MDI) as crosslinker and diamino diphenyl sulfone (DDS) as chain extender. The effect of different amounts of Pani (varying from 5% to 25%) on the chain extended PUs has been reported. The Pani‐filled chain extended PU sheets were characterized by their physico‐mechanical properties such as density, tensile strength, percentage elongation at break and surface hardness. Electrical properties, such as volume and surface conductivity, also have been reported. These results are corroborated with microcrystalline parameters of PU/Pani estimated using wide angle X‐ray scattering (WAXS). Polym. Eng. Sci. 44:772–778, 2004. © 2004 Society of Plastics Engineers.  相似文献   

8.
填充油对充油顺丁橡胶性能的影响   总被引:1,自引:0,他引:1  
研究了填充高芳烃油和环烷油对充油顺丁橡胶性能的影响。结果表明:填充高芳烃油比填充环烷油的橡胶的拉伸强度、伸长率、生胶门尼略高,定伸应力略低;充油顺丁橡胶的门尼粘度值随填充油量的增大而减小。  相似文献   

9.
明胶蛋白质基可降解塑料薄膜的研究   总被引:1,自引:0,他引:1  
方尚勇  李磊 《塑料科技》2007,35(11):60-64
将分散均匀的明胶、无机填料和复合增塑剂的水溶液用流延法成膜,制得了蛋白质基可降解塑料薄膜。用拉伸实验、吸水实验和降解实验表征了蛋白质基可降解塑料薄膜的性能。结果表明:薄膜的拉伸强度和断裂伸长率随增塑剂用量的增加而增加,随无机填料用量的增加而减小;薄膜的耐水性随增塑剂用量的增加而变差;蛋白质基塑料薄膜具有生物降解性,在20天内降解度为10%左右。  相似文献   

10.
Al2O3 nanoparticles were introduced to natural rubber (NR) to investigate its reinforcement effect on filled NR vulcanizates. The results show that Nano‐Al2O3/NR nanocomposites exhibit significantly improved tensile strength, elongation at break, modulus, and tearing strength. Scanning electron microscopy analyses indicate that nanoparticles dispersed in NR matrix at nanoscale and show nano‐reinforcement effect on NR vulcanizates. The aging resistances of filled NR vulcanizates improve. After aging test, tensile strength, tearing strength, and modulus improved, and elongation at break decreased. These attribute to the crosslink maturation reactions, which result in the conversion of polysulfidic linkages into disulfidic and monosulfidic ones. The acid and alkaline resistances of nano‐Al2O3‐filled NR vulcanizates improve compared with that of unfilled NR systems. After acid and alkaline test, tensile strength and elongation at break improve, and modulus decrease. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

11.
张文龙  张琳  陈宇 《中国塑料》2022,36(10):54-59
采用自制乙烯⁃辛烯共聚物接枝丙烯腈(POE⁃g⁃AN)耐油增容剂,对乙烯醋酸乙烯脂(EVA)/线性低密度聚乙烯(PE⁃LLD)电缆料的耐油性能、力学性能、电性能进行了研究。结果表明,随着POE⁃g⁃AN含量的增加,材料的拉伸强度、耐油性能、电性能均呈先增大后减小的趋势,而断裂伸长率不断增加。当接枝物含量为6 %(质量分数,下同)时,体系中各相间相容性改善效果最好,此时改性电缆料的耐油性、拉伸强度、断裂伸长率、质量、体积变化率的绝对值最小,分别为35.7 %、34.6 %、15.69 %和15.35 %;拉伸强度提升了8.5 %,达到13.02 MPa,断裂伸长率最大为274.15 %;直流击穿场强最高为199 kV/mm,体积电阻率最大为7.84×1012 Ω·m。  相似文献   

12.
Rice straw fiber‐high density polyethylene (HDPE) composites were prepared to investigate the effects of rice straw fiber morphology (rice straw refined fiber, rice straw pellet, rice straw strand), fiber content (20 and 40 wt %), and maleic anhydride polyethylene (MAPE) concentration (5 wt %) on the mechanical and thermal properties of the rice straw fiber‐HDPE composites in this study. Rice straw refined fiber exhibited more variability in length and width, and have a higher aspect ratio of 16.3. Compared to the composites filled of rice straw pellet, the composites made of the refined fiber and strand had a slightly higher tensile strength and lower tensile elongation at break. The tensile and flexural strength of the composites increased slightly with increasing rice straw fiber content up to 40 wt %, while the tensile elongation at break decreased. With addition MAPE, the composites filled with 20 wt % rice straw fiber showed an increase in tensile, flexural and impact strength and a decrease in tensile elongation at break. Differential scanning calorimetry showed that the fiber addition and morphology had no appreciable effect on the crystallization temperature of the composites but decreased the crystallinity. The scanning electron microscopy observation on the fracture surface of the composites indicated that introduction of MAPE to the system resulted in promotion in fiber dispersion, and an increase in interfacial bonding strength. Fiber breakage occurred significantly in the composites filled with refined fiber and strand after extruding and injection processing. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

13.
Fly‐ash (FA) was surface treated with silane coupling agents (CA) vinyltriethoxy silane and aminopropyltrimethoxysilane. Fly‐ash/polyester (FA/GPR) and surface treated fly‐ash/polyester (FA/CA/GPR) particulate composites were made. The composites were exposed to various adverse environmental conditions such as water, boiling water, salt water, acid, alkali, toluene, weather and freezing–thawing cycles for 30 days. The mechanical properties, ie tensile strength, tensile modulus, elongation at break, flexural strength, flexural modulus, compressive strength, impact strength and hardness of FA/GPR and FA/CA/GPR were studied before and after exposure to adverse environmental conditions. The results indicate that the mechanical properties of FA/GPR composites are improved by surface treatment of FA and that their resistance to the various environmental stresses is also enhanced substantially by surface treatment. © 2002 Society of Chemical Industry  相似文献   

14.
对纳米Al2O3、玻纤粉、石墨、微珠粉等材料填充的UHMWPE复合材料进行了拉伸、强度和磨损性能试验。结果表明:不同填料对UHMWPE性能的影响不一样,几种填料填充UHMWPE后,其硬度及耐磨性有不同的改善,而拉伸强度和断裂伸长率有不同程度的下降;其中以质量分数为10%的纳米Al2O3填充UHMWPE综合性能最佳;石墨填充材料的加入会使UHMWPE拉伸强度和断裂伸长率下降较大,脆性增大,但可较好地改善UHMWPE的耐磨性。  相似文献   

15.
Alumina trihydrate (ATH) was added to (low‐density polyethylene)/(ethylene‐[vinyl acetate] copolymer) blends (LPEs) to enhance their flame resistance. The addition of substantial amounts of ATH has been known to have deleterious effects on the mechanical properties of such blends. Hence, electron beam irradiation was used to improve the mechanical properties of our ATH‐filled LPE specimens. The specimens were irradiated at 50 to 150 kGy before being cut into specified shapes for analysis. The increase in the irradiation dosage increased the gel content as a result of the formation of crosslinked networks. Also, the flame resistance of the LPE blends was enhanced by increasing both the loading level of ATH and the irradiation dosage. However, a high ATH loading level reduced tensile strength and elongation at break. Nevertheless, the electron beam irradiation maintained the tensile strength and elongation of the ATH‐filled blends. In addition, a higher content of ATH in the LPE blends showed reactive interaction with irradiation effects. A higher amount of ATH reduced the electrical resistivity of the blends, but analysis of their surface and volume resistivity showed that the electrical resistance of the ATH‐filled LPE blends could be improved by electron beam irradiation in the range of 50 to 150 kGy. J. VINYL ADDIT. TECHNOL., 20:91–98, 2014. © 2014 Society of Plastics Engineers  相似文献   

16.
水性酚醛树脂在燃油滤纸基中的应用   总被引:1,自引:0,他引:1  
制备了游离甲醛含量仅为0.92%的、可用于燃油滤纸增强的环保型改性水溶性酚醛树脂(PF)。着重探讨了PF浸渍、固化等加工工艺对浸渍滤纸力学性能、耐燃油性能和耐水性能等影响。结果表明:经改性水溶性PF浸渍处理后的滤纸,其耐破度为342 kPa、15°挺度为6.61 mN.m、平均张力为6.37 kN/m以及断裂伸长率为3.86%(柔韧性良好);该浸渍滤纸具有优异的耐燃油性能和良好的耐水性能,其综合性能已接近进口同类产品水平,并且其在燃油滤清器中的应用具有可行性。  相似文献   

17.
《国际聚合物材料杂志》2012,61(2-3):351-366
Abstract

Sago starch filled linear low density polyethylene (LLDPE) composites, have been prepared by melt mixing of the granular starch and LLDPE in a HAAKE internal mixer. The tensile, water absorption and enzymatic degradation properties of the composites have been determined. Incorporation of sago starch into LLDPE led to decrease in tensile strength and elongation at break of the composites. Up to 15 wt.% of sago starch could be added to LLDPE without adverse effects on the tensile properties. The water uptake increased with immersion time and the rate of absorption is strongly controlled by the immersion temperatures. Dramatic reduction in tensile properties were observed in the composites that were immersed in water at 90[ddot]C. The recovery of the tensile strength and elongation at break upon redrying is about 37.5 and 1.6% respectively. The permanent damage to the composites was attributed to severe hydrolysis of the starch particles. The enzymatic degradation study using oc-amylase revealed that both tensile strength and elongation at break reduced with time of treatment. Mode of failures of both LLDPE matrix and its sago starch filled composites, assessed by fracto-graphic analysis in a scanning electron microscope (SEM) are discussed.  相似文献   

18.
A nanosize CaCO3 filler was synthesized by an in situ deposition technique, and its size was confirmed by X‐ray diffraction. CaCO3 was prepared in three different sizes (21, 15, and 9 nm). Styrene–butadiene rubber (SBR) was filled with 2–10 wt % nano‐CaCO3 with 2% linseed oil as an extender. Nano‐CaCO3–SBR rubber composites were compounded on a two‐roll mill and molded on a compression‐molding machine. Properties such as the specific gravity, swelling index, hardness, tensile strength, abrasion resistance, modulus at 300% elongation, flame retardancy, and elongation at break were measured. Because of the reduction in the nanosize of CaCO3, drastic improvements in the mechanical properties were found. The size of 9 nm showed the highest increase in the tensile strength (3.89 MPa) in comparison with commercial CaCO3 and the two other sizes of nano‐CaCO3 up to an 8 wt % loading in SBR. The elongation at break also increased up to 824% for the 9‐nm size in comparison with commercial CaCO3 and the two other sizes of nano‐CaCO3. Also, these results were compared with nano‐CaCO3‐filled SBR without linseed oil as an extender. The modulus at 300% elongation, hardness, specific gravity, and flame‐retarding properties increased with a reduction in the nanosize with linseed oil as an extender, which helped with the uniform dispersion of nano‐CaCO3 in the rubber matrix. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 2563–2571, 2005  相似文献   

19.
研究了己内酯改性丙烯酸酯(FA2D)对聚丙烯(PP)/乙烯–丙烯–丁二烯橡胶(EPDM)热塑性弹性体的耐油性、压缩变形性能、力学性能及老化性能的影响。结果表明,随着FA2D含量的增加,PP/EPDM/FA2D热塑性弹性体的耐油性逐渐提高,压缩变形性能略有改善,总碳总挥发性有机化合物(TVOC)含量逐渐增大,拉伸强度、断裂伸长率和撕裂强度均呈逐渐降低趋势,而耐老化性能有所改善。  相似文献   

20.
The tensile properties of high‐strength poly(vinyl alcohol) (PVA) fibers after heat treatment in air, water, and engine oil were studied. The results show that heat treatment in air, water, and engine oil have a different influence on the tensile properties of high‐strength PVA fibers. After heat treatment in air, the fibers possess excellent heat stability of the tensile properties. But in water, especially in hot water, the tenacity, Young's modulus, and specific work of rupture of the fibers decrease, while the elongation at break of the fibers increases. Similarly, engine oil has a significant influence on the tensile properties of the fibers. When the temperature of engine oil is above 120°C, the tensile properties of the fibers decrease drastically. We also discuss the influence of heat, water, and engine oil on the tensile properties of high‐strength PVA fibers in relation to the structure of the fibers. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 237–242, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号