首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 0 毫秒
1.
Rapid population and economic growth, excessive use of fossil fuels, and climate change have contributed to a serious turn towards environmental management and sustainability. The agricultural sector is a big contributor to (lignocellulosic) waste, which accumulates in landfills and ultimately gets burned, polluting the environment. In response to the current climate-change crisis, policymakers and researchers are, respectively, encouraging and seeking ways of creating value-added products from generated waste. Recently, agricultural waste has been regularly appearing in articles communicating the production of a range of carbon and polymeric materials worldwide. The extraction of cellulose nanocrystals (CNCs) and carbon quantum dots (CQDs) from biomass waste partially occupies some of the waste-recycling and management space. Further, the new materials generated from this waste promise to be effective and competitive in emerging markets. This short review summarizes recent work in the area of CNCs and CQDs synthesised from biomass waste. Synthesis methods, properties, and prospective application of these materials are summarized. Current challenges and the benefits of using biomass waste are also discussed.  相似文献   

2.
两性纤维素是在纤维素主链上同时带有阴阳离子基团的一类水溶性的纤维素衍生物,在水处理、油田开采、湍流减阻、造纸湿部化学、吸水材料、日用化工等领域有着广阔的应用前景。其合成方法包括:从易溶性的纤维素衍生物开始的接枝、自由基聚合以及直接从纤维素为起始原料的一步合成方法。综述了两性纤维素近年来的在制备和利用领域取得的发展。  相似文献   

3.
Cellulose nanocrystals (CNCs) incorporated with silver nanoparticles (AgNPs) photonic films have drawn considerable attention due to their plasmonic chiroptical activity. However, the exploitation of some fundamental properties for practical use such as the affinity analysis of metal nanoparticles attached to the surface of photonic films according to the solvent compatibility and antibacterial activity under physical conditions has yet not been studied. Hence, a facile process of in situ deposition of AgNPs into the chiral structure of CNC films is proposed. CNC photonic films, cross-linked by glutaraldehyde are prepared. This interaction generated the solvents-stable photonic film with a considerable amount of unreacted aldehyde functional groups that facilitates the reduction of Ag salt to AgNPs. The formed AgNPs in the photonic films show excellent stability over immersion in various polar and non-polar solvents. The post-solvent treated photonic films display excellent contact-based antibacterial behavior against gram-negative Escherichia coli.  相似文献   

4.
In this study, cellulose nanocrystals/zinc oxide (CNCs/ZnO) nanocomposites were dispersed as bifunctional nano-sized fillers into poly(vinyl alcohol) (PVA) and chitosan (Cs) blend by a solvent casting method to prepare PVA/Cs/CNCs/ZnO bio-nanocomposites films. The morphology, thermal, mechanical and UV-vis absorption properties, as well antimicrobial effects of the bio-nanocomposite films were investigated. It demonstrated that CNCs/ZnO were compatible with PVA/Cs and dispersed homogeneously in the polymer blend matrix. CNCs/ZnO improved tensile strength and modulus of PVA/Cs significantly. Tensile strength and modulus of bio-nanocomposite films increased from 55.0 to 153.2 MPa and from 395 to 932 MPa, respectively with increasing nano-sized filler amount from 0 to 5.0 wt %. The thermal stability of PVA/Cs was also enhanced at 1.0 wt % CNCs/ZnO loading. UV light can be efficiently absorbed by incorporating ZnO nanoparticles into a PVA/Cs matrix, signifying that these bio-nanocomposite films show good UV-shielding effects. Moreover, the biocomposites films showed antibacterial activity toward the bacterial species Salmonella choleraesuis and Staphylococcus aureus. The improved physical properties obtained by incorporating CNCs/ZnO can be useful in variety uses.  相似文献   

5.
利用纤维原料在串联式生物反应器中协同酶解发酵乳酸   总被引:3,自引:0,他引:3  
采用廉价的纤维素原料代替粮食发酵生产乳酸,具有重要的社会意义和经济价值。在串联式生物反应器中,将纤维原料酶水解与固定化乳酸杆菌发酵相耦联,纤维素的酶解产物葡萄糖被有效转化成乳酸,纤维素对乳酸的转化率和乳酸产率分别为70.3%和0.713g?(L?h)?1。在酶解体系中添加纤维二糖酶可以提高酶解得率。将酶解罐、固定化纤二糖酶柱和固定化细胞柱相串联,可有效消除纤维二糖积累所造成的反馈抑制作用,纤维素对乳酸的转化率和乳酸产率分别提高到90.6%和0.986g?(L?h)?1。串联式生物反应器性能稳定,在重复分批发酵工艺中,连续10批纤维素对乳酸的转化率平均为89.6%。采用分批添料工艺,纤维底物的终浓度可增加到200g?L?1,发酵终点的乳酸浓度达105.2g?L?1,乳酸产率为1.315g?(L?h)?1。对等量底物而言,反应时间明显缩短,同时纤维素酶的利用率也得到了有效提高。  相似文献   

6.
为了提高海藻酸盐水凝胶的生物应用性,采用互穿网络技术、纤维素纳米晶(CNCs)补强和明胶表面覆积相结合的方法构建了氧化海藻酸盐/纤维素纳米晶/聚丙烯酰胺-明胶 (OSA/CNCs/PAM-GT) 复合水凝胶。通过FT-IR、TGA、 XRD、溶胀性和降解性实验以及细胞相容性测试考察了CNCs含量对OSA/CNCs/PAM-GT复合水凝胶结构和性能的影响。实验结果表明,CNCs能够与基体中的聚合物产生相互作用力。并且随着CNCs含量的增加,OSA/CNCs/PAM-GT 复合水凝胶的孔隙率下降,力学性能提高。而且它们的溶胀性和生物降解性虽然受CNCs含量增加而呈现下降的趋势,但是幅度较小,说明CNCs能够在一定程度上调控复合水凝胶的物化性能。同时,OSA/CNCs/PAM-GT 复合水凝胶展现出较好的细胞粘附、增殖和分化性能。当CNCs的含量在0.5%时,细胞增殖的效果最佳,而CNCs的含量为1.5%时,细胞分化效果最显著。因此,将CNCs掺杂到OSA/PAM互穿网络基体中能够有效地调控其生物性能,使其适用于生物医学领域。  相似文献   

7.
Abstract

Cynara cardunculus was pretreated and used to produce fiberboards without synthetic adhesives. The lignocellulosic material was steam exploded through a thermo-mechanical vapor process in a batch reactor. After pretreatment the material was dried, ground, and pressed to produce the boards. The effects of pretreatment factors and pressing conditions on the chemical and physico-mechanical properties of the fiberboards were evaluated and the conditions that optimize these properties were found. Response surface methodology based on a central composite design and multiple response optimization were used. The variables studied and their respective variation ranges were: pretreatment temperature, 160–240°C; pretreatment time 2.5–12.5 min; pressing temperature, 190–230°C; initial and final pressing pressures, 4–20 MPa, and initial and final pressing times, 1–9 min. Good properties were obtained at optimum conditions found (modulus of elasticity up to 5970 MPa, modulus of rupture up to 59 MPa, internal bond up to 0.8 MPa, thickness swelling as low as13.5%, and water absorption as low as 18.5%). Some of the boards fully satisfy the standard specifications although they were not produced at the optimum combination of process factors. Optimum operational conditions for producing binderless fiberboards from Cynara cardunculus that fully satisfy the European standards were found based on multiple response optimization methodology.  相似文献   

8.
A novel highly sensitive Ag‐nanocomposite for humidity detection has been successfully prepared. Initially, cellulose isolated from Tunisian palm date petiole was converted to carboxymethyl cellulose (CMC) as biomatrix under heterogeneous conditions. The synthesized product was thoroughly characterized by means of FT‐IR spectroscopy, viscosity analysis, and high performance size exclusion chromatography multiangle laser light scattering. CMC was used as reducing and stabilizing agent to prepare CMC‐stabilized silver nanoparticles via a rapid green method. The bioreduction of silver ions under different experimental conditions, including Ag+ concentration and pH, was investigated. Optimal experimental conditions provided a long‐term stable colloidal suspension and well‐dispersed spherical shape Ag NPs with a size ranging from 13 to 28 nm. Ag‐nanocomposite coated quartz microbalance crystal was used as sensitive layer for humidity detection. A comparative study showed that the immobilized metallic nanostructures greatly reduced changes in visco‐elastic properties, increased surface area as well as surface local charge density of the CMC. Consequently, sensor performances were greatly enhanced: better stability even at higher relative humidity (RH), good reproducibility and linearity (11–98% RH), low hysteresis characteristics, and rapid response and recovery times (14 and 6 s, respectively) were obtained. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43686.  相似文献   

9.
《分离科学与技术》2012,47(14):3695-3711
Abstract

A crystalline sample of organic-inorganic cation exchanger acrylamide aluminumtungstate has been synthesized. The material behaves as a mono-functional cation-exchanger with an ion–exchange capacity 1.25 meq/g for Na+ ions. The material has been characterized on the basis of thermal stability, chemical stability, FTIR, TGA-DTA, X-ray, and SEM studies. The effect of time and temperature on the distribution coefficient of metal ion was studied. It was concluded that 30°C appeared to be the most favorable temperature. Sorption behavior of the metal ions was studied in different solvent systems. On the basis of distribution studies, the material was found to be selective for Pb2+ ions. Its selectivity was examined by achieving some important binary separations like Mg2+-Pb2+, Hg2+-Pb2+, Ca2+-Pb2+ Zn2+-Pb2+, Ni2+-Pb2+, and Al3+-Pb2+. The practical applicability of the cation-exchanger was demonstrated in the separation of Pb2+ ions from a synthetic mixture.  相似文献   

10.
Objects touched by patients and healthcare workers in hospitals may harbor pathogens, including multi-drug resistant (MDR) staphylococci, enterococci (VRE), Escherichia coli, Acinetobacter, and Pseudomonas species. Medical devices contaminated by these pathogens may also act as a source of severe and difficult-to-treat human infections, thus becoming a critical public health concern requiring urgent resolutions. To this end, we recently reported the bactericidal effects of a cationic copolymer (CP1). Here, aiming at developing a bactericidal formulation possibly to be used either for surfaces disinfection or to treat skin infections, CP1 was formulated as a hydrogel (CP1_1.1-Hgel). Importantly, even if not cross-linked, CP1 formed the gel upon simple dispersion in water, without requiring gelling agents or other additives which could be skin-incompatible or interfere with CP1 bactericidal effects in possible future topical applications. CP1_1.1-Hgel was characterized by attenuated-total-reflectance Fourier transform infrared (ATR-FTIR) and UV-Vis spectroscopy, as well as optic and scanning electron microscopy (OM and SEM) to investigate its chemical structure and morphology. Its stability was assessed by monitoring its inversion properties over time at room temperature, while its mechanical characteristics were assessed by rheological experiments. Dose-dependent cytotoxicity studies performed on human fibroblasts for 24 h with gel samples obtained by diluting CP_1.1-Hgel at properly selected concentrations established that the 3D network formation did not significantly affect the cytotoxic profile of CP1. Also, microbiologic investigations carried out on two-fold serial dilutions of CP1-gel confirmed the minimum inhibitory concentrations (MICs) previously reported for the not formulated CP1.Selectivity indices values up to 12 were estimated by the values of LD50 and MICs determined here on gel samples.  相似文献   

11.
Bifidobacterium bifidum BGN4 is a probiotic strain that has been used as a major ingredient to produce nutraceutical products and as a dairy starter since 2000. The various bio-functional effects and potential for industrial application of B. bifidum BGN4 has been characterized and proven by in vitro (i.e., phytochemical bio-catalysis, cell adhesion and anti-carcinogenic effects on cell lines, and immunomodulatory effects on immune cells), in vivo (i.e., suppressed allergic responses in mouse model and anti-inflammatory bowel disease), and clinical studies (eczema in infants and adults with irritable bowel syndrome). Recently, the investigation of the genome sequencing was finished and this data potentially clarifies the biochemical characteristics of B. bifidum BGN4 that possibly illustrate its nutraceutical functionality. However, further systematic research should be continued to gain insight for academic and industrial applications so that the use of B. bifidum BGN4 could be expanded to result in greater benefit. This review deals with multiple studies on B. bifidum BGN4 to offer a greater understanding as a probiotic microorganism available in functional food ingredients. In particular, this work considers the potential for commercial application, physiological characterization and exploitation of B. bifidum BGN4 as a whole.  相似文献   

12.
Latex, a sticky emulsion produced by specialized cells called laticifers, is a crucial part of a plant’s defense system against herbivory and pathogens. It consists of a broad spectrum of active compounds, which are beneficial not only for plants, but for human health as well, enough to mention the use of morphine or codeine from poppy latex. Here, we reviewed latex’s general role in plant physiology and the significance of particular compounds (alkaloids and proteins) to its defense system with the example of Chelidonium majus L. from the poppy family. We further attempt to present latex chemicals used so far in medicine and then focus on functional studies of proteins and other compounds with potential pharmacological activities using modern techniques such as CRISPR/Cas9 gene editing. Despite the centuries-old tradition of using latex-bearing plants in therapies, there are still a lot of promising molecules waiting to be explored.  相似文献   

13.
To improve the interaction between syndiotactic polypropylene (SPP) and fibrous cellulose (FC), the effects of the addition of maleated polypropylene (MAPP) and FC surface modification with 3‐aminopropyltriethoxysilane (APTES) on SPP/FC composites were studied with respect to the morphology and the tensile properties. The addition of MAPP brought about an improvement in the interfacial adhesion between SPP and FC according to scanning electron microscopy observations and tensile testing. This improvement was, however, less effective than the improvement in the interfacial adhesion between isotactic polypropylene (IPP) and FC. SPP and MAPP partially or microscopically phase‐separated because of the IPP‐like polymer chain structure of MAPP. With respect to the compatibility between SPP and FC, FC surface modification with APTES was more suitable. The increase in Young's modulus was remarkable in the SPP/silanized FC composite with APTES. The tensile strength of the SPP/silanized FC composite with APTES was, however, considerably lower than that of the SPP/FC/MAPP composite. These results suggest that interfacial improvement between SPP and FC requires a compatibilizer or a surface modifier with a suitable primary structure. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

14.
Rubber compounds may exhibit significant batch variations due to multiple different ingredients mixed in one compound. Hence, defining the manufacturing process for constant part quality can be challenging. Common strategies in considering batch variations in rubber processing include the determination of reaction kinetics, and the definition of process parameters according to normalized vulcanization isotherms. Thereby, maintenance of the degree of cure is targeted. With this path, information on the mechanical properties of vulcanizates is lost, despite its visibility from the kinetic data and part quality assurance is missed. This contribution points out the differences obtained for parts produced to the same degree of cure at various temperatures and intends to emphasize new strategies in process definitions. Therefore, compression molded parts were produced from styrene-butadien rubber, which was then characterized with mechanical and chemical methods. Each of the methods revealed a significant difference in part behavior, which were manufactured to the same degrees of cure but at different temperatures. It was concluded that a temperature-dependent reaction rate should be considered when quality maintenance is targeted in the production. Only then will it be possible to predict the properties adequately, with simultaneous effect of enhancing sustainability policies in rubber processing.  相似文献   

15.
50 : 50 natural rubber (NR) and ethylene–propylene–diene monomer rubber (EPDM) blends were prepared with different contents of cashew nut shell liquid (CNSL), a natural product obtained from the shells of the cashew nut, as a plasticizer. For comparison, a commercial paraffin oil plasticizer was also used. The effect of plasticizer content on the cure characteristics, processability, and mechanical properties such as tensile strength, elongation at break, and Young's modulus before and after ageing was investigated. Scanning electron microscopy (SEM) was used to observe the blend morphology. The results indicated that the CNSL plasticizer resulted in lower Mooney viscosity and lower cure time of the 50 : 50 NR/EPDM blends. The incorporation of CNSL into 50 : 50 NR/EPDM blends improved tensile strength and elongation at break but decreased Young's modulus. On addition of CNSL the resistance of the blends to heat and weathering ageing improved. Scanning electron micrographs revealed that the morphology of the blend plasticized with CNSL is finer and more homogeneous compared with the blend plasticized with paraffin oil. Overall results indicate that CNSL can be used as a cheaper plasticizer to replace paraffin oil in NR/EPDM blends with improved processability and mechanical properties. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号