首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Ultralight and compressible carbon materials have promising applications in strain and pressure detection. However, it is still difficult to prepare carbon materials with supercompressibility, elasticity, stable strain–electrical signal response, and ultrasensitive detection limits, due to the challenge in structural regulation. Herein, a new strategy to prepare a reduced graphene oxide (rGO)‐based lamellar carbon aerogels with unexpected and integrated performances by designing wave‐shape rGO layers and enhancing the interaction among the rGO layers is demonstrated. Addition of cellulose nanocrystalline and low‐molecular‐weight carbon precursors enhances the interaction among rGO layers and thus produces an ultralight, flexible, and superstable structure. The as‐prepared carbon aerogel displays a supercompressibility (undergoing an extreme strain of 99%) and elasticity (100% height retention after 10 000 cycles at a strain of 30%), as well as stable strain–current response (at least 10 000 cycles). Particularly, the carbon aerogel is ultrasensitive for detecting tiny change in strain (0.012%) and pressure (0.25 Pa), which are the lowest detection limits for compressible carbon materials reported in the literature. Moreover, the carbon aerogel exhibits excellent bendable performance and can detect an ultralow bending angle of 0.052°. Additionally, the carbon aerogel also demonstrates its promising application as wearable devices.  相似文献   

2.
We designed and constructed reduced graphene oxide (rGO) functionalized high electron mobility transistor (HEMT) for rapid and ultra‐sensitive detection of label‐free DNA in real time. The micrometer sized rGO sheets with structural defects helped absorb DNA molecules providing a facile and robust approach to functionalization. DNA was immobilized onto the surface of HEMT gate through rGO functionalization, and changed the conductivity of HEMT. The real time monitor and detection of DNA hybridization by rGO functionalized HEMT presented interesting current responses: a “two steps” signal enhancement in the presence of target DNA; and a “one step” signaling with random DNA. These two different recognition patterns made the HEMT capable of specifically detecting target DNA sequence. The working principle of the rGO functionalized HEMT can be demonstrated as the variation of the ambience charge distribution. Furthermore, the as constructed DNA sensors showed excellent sensitivity of detect limit at 0.07 fM with linear detect range from 0.1 fM to 0.1 pM. The results indicated that the HEMT functionalized with rGO paves a new avenue to design novel electronic devices for high sensitive and specific genetic material assays in biomedical applications.  相似文献   

3.
The development of pressure sensors is crucial for the implementation of electronic skins and for health monitoring integrated into novel wearable devices. Tremendous effort is devoted toward improving their sensitivity, e.g., by employing microstructured electrodes or active materials through cumbersome processes. Here, a radically new type of piezoresistive pressure sensor based on a millefeuille‐like architecture of reduced graphene oxide (rGO) intercalated by covalently tethered molecular pillars holding on‐demand mechanical properties are fabricated. By applying a tiny pressure to the multilayer structure, the electron tunnelling ruling the charge transport between successive rGO sheets yields a colossal decrease in the material's electrical resistance. Significantly, the intrinsic rigidity of the molecular pillars employed enables the fine‐tuning of the sensor's sensitivity, reaching sensitivities as high as 0.82 kPa?1 in the low pressure region (0–0.6 kPa), with short response times (≈24 ms) and detection limit (7 Pa). The pressure sensors enable efficient heartbeat monitoring and can be easily transformed into a matrix capable of providing a 3D map of the pressure exerted by different objects.  相似文献   

4.
Conjugated‐polyelectrolyte (CPE)‐functionalized reduced graphene oxide (rGO) sheets are synthesized for the first time by taking advantage of a specially designed CPE, PFVSO3, with a planar backbone and charged sulfonate and oligo(ethylene glycol) side chains to assist the hydrazine‐mediated reduction of graphene oxide (GO) in aqueous solution. The resulting CPE‐functionalized rGO (PFVSO3‐rGO) shows excellent solubility and stability in a variety of polar solvents, including water, ethanol, methanol, dimethyl sulfoxide, and dimethyl formamide. The morphology of PFVSO3‐rGO is studied by atomic force microscopy, X‐ray diffraction, and transmission electron microscopy, which reveal a sandwich‐like nanostructure. Within this nanostructure, the backbones of PFVSO3 stack onto the basal plane of rGO sheets via strong π–π interactions, while the charged hydrophilic side chains of PFVSO3 prevent the rGO sheets from aggregating via electrostatic and steric repulsions, thus leading to the solubility and stability of PFVSO3‐rGO in polar solvents. Optoelectronic studies show that the presence of PFVSO3 within rGO induces photoinduced charge transfer and p‐doping of rGO. As a result, the electrical conductivity of PFVSO3‐rGO is not only much better than that of GO, but also than that of the unmodified rGO.  相似文献   

5.
李豪  唐志红  卓尚军  钱荣 《无机材料学报》2021,36(12):1277-1282
二氧化氮气体是一种常见的大气污染物, 对自然环境和人类健康造成严重的危害, 开发检测该类有毒有害气体的高效检测设备势在必行。新型复合薄膜气体传感器可以在常温下对二氧化氮进行高选择性、高灵敏度检测, 为自然环境和人类健康保驾护航。本工作采用化学沉淀法和超声法制备了多孔、高比表面积的ZIF8/还原氧化石墨烯(ZIF8/rGO)复合材料, 以此为气敏材料构建NO2传感器, 并系统研究了其在室温下对NO2的气敏性能, 进一步探讨了ZIF8/rGO气敏传感器感应NO2的可能机理。气敏实验结果表明:ZIF8/rGO气敏传感器对50×10-6 NO2的响应达到34.77%, 是纯rGO气敏传感器的3.2倍。ZIF8/rGO传感器在4个可逆循环测试中表现出较好的可重复性, RSD(Relative Standard Deviation)为3.9%。此外, ZIF8/rGO传感器表现出优秀的长期稳定性(RSD为2.5%)、选择性和低的检出限(3.8×10-8)。室温下灵敏感应NO2的气敏性能主要归因于ZIF8的多孔结构和超大的比表面积以及rGO的优越性能。本工作将为ZIF8/rGO作为气敏材料检测有毒有害的NO2气体提供新思路。  相似文献   

6.
Fabrication of elastic pressure sensors with low cost, high sensitivity, and mechanical durability is important for wearables, electronic skins and soft robotics. Here, we develop high-sensitivity porous elastomeric sensors for piezoresistive and capacitive pressure detection. Specifically, a porous polydimethylsiloxane (PDMS) sponge embedded with conductive fillers of carbon nanotubes (CNTs) or reduced graphene oxide (rGO) was fabricated by an in-situ sugar template strategy. The sensor demonstrates sensitive deformation to applied pressure, exhibiting large and fast response in resistance or capacitance for detection of a wide range of pressure (0‒5 kPa). PDMS, as a high-elasticity framework, enables creation of sensors with high sensitivity, excellent stability, and durability for long-term usage. The highest sensitivities of 22.1 and 68.3 kPa−1 can be attained by devices with 5% CNTs and 4% rGO, respectively. The geometrics of the sponge sensor is tailorable using tableting technology for different applications. The sensors demonstrate finger motion detection and heart-rate monitoring in real-time, as well as a capacitive sensor array for identification of pressure and shape of placed objects, exhibiting good potential for wearables and human-machine interactions.  相似文献   

7.
Highly reduced graphene oxide (rGO) films are fabricated by combining reduction with smeared hydrazine at low temperature (e.g., 100 °C) and the multilayer stacking technique. The prepared rGO film, which has a lower sheet resistance (≈160–500 Ω sq−1) and higher conductivity (26 S cm−1) as compared to other rGO films obtained by commonly used chemical reduction methods, is fully characterized. The effective reduction can be attributed to the large “effective reduction depth” in the GO films (1.46 µm) and the high C1s/O1s ratio (8.04). By using the above approach, rGO films with a tunable thickness and sheet resistance are achieved. The obtained rGO films are used as electrodes in polymer memory devices, in a configuration of rGO/poly(3‐hexylthiophene) (P3HT):phenyl‐C61‐butyric acid methyl ester (PCBM)/Al, which exhibit an excellent write‐once‐read‐many‐times effect and a high ON/OFF current ratio of 106.  相似文献   

8.
A polymer based on fluorene, thiophene, and benzothiadazole as the donor–spacer–acceptor triad is covalently coupled to reduced graphene oxide (rGO) sheets via diazonium coupling with phenyl bromide, followed by Suzuki coupling. These polymer–graphene hybrids show good solubility in organic solvents, such as chloroform, tetrahydrofuran (THF), toluene, dichlorobenzene, and N,N‐dimethylformamide (DMF), and exhibit an excellent optical‐limiting effect with a 532‐nm laser beam. The optical‐limiting threshold energy values (0.93 J cm?2 for G–polymer 1 and 1.12 J cm?2 for G–polymer 2) of these G–polymer hybrids are better than that of carbon nanotubes (3.6 J cm?2).  相似文献   

9.
以氧化石墨烯(GO)和硝酸银为原材料,聚乙烯吡咯烷酮(PVP)为还原剂和稳定剂,通过水热法制备出还原氧化石墨烯/银纳米颗粒(rGO/AgNPs)复合材料。采用透射电子显微镜(TEM)、X射线衍射(XRD)及紫外-可见分光光度计(UV-Vis)对rGO/AgNPs复合材料的形貌、组成和结构进行表征。同时,将rGO/AgNPs复合材料修饰到玻碳电极表面制备出过氧化氢(H_2O_2)电化学传感器,通过循环伏安法(CV)和计时安培响应法(i-t)对传感器进行电化学性能测试。实验结果表明:制备的rGO/AgNPs传感器具有较好的电化学性能,其对H_2O_2检测的灵敏度为340.6μA·(mmol/L)~(-1)·cm~(-2),响应时间为3s,最低检测极限为7.5μmol/L(S/N=3),线性检测范围为20~4950μmol/L(线性相关系数为R=0.9973)。  相似文献   

10.
Patterned reduced graphene oxide (rGO) films with vertically aligned tip structures are fabricated by a straightforward self‐assembly method. The size, uniformity of the patterns, and alignment of the tips are successfully controlled according to the concentration of a GO/octadecylamine (ODA)‐dispersed solution. The surface energy difference between the GO/ODA solution and a self‐assembled water droplet is a critical parameter for determining the pattern structure. Numerous rGO nanosheets are formed so as to be vertically aligned with respect to the substrate during film fabrication at GO concentrations below 2.0 g/L. These samples provide high field‐emission characteristics. The patterned rGO arrays are highly flexible with preservation of the field emission properties, even at large bending angles. This is attributed to the high crystallinity, emitter density, and good chemical stability of the rGO arrays, as well as the strong interactions between the rGO arrays and the substrate.  相似文献   

11.
A hybrid composite material of graphene and carbon nanotube (CNT) for high performance chemical and temperature sensors is reported. Integration of 1D and 2D carbon materials into hybrid carbon composites is achieved by coupling graphene and CNT through poly(ionic liquid) (PIL) mediated‐hybridization. The resulting CNT/PIL/graphene hybrid materials are explored as active materials in chemical and temperature sensors. For chemical sensing application, the hybrid composite is integrated into a chemo‐resistive sensor to detect a general class of volatile organic compounds. Compared with the graphene‐only devices, the hybrid film device showed an improved performance with high sensitivity at ppm level, low detection limit, and fast signal response/recovery. To further demonstrate the potential of the hybrid films, a temperature sensor is fabricated. The CNT/PIL/graphene hybrid materials are highly responsive to small temperature gradient with fast response, high sensitivity, and stability, which may offer a new platform for the thermoelectric temperature sensors.  相似文献   

12.
Achieving high sensitivity over a broad pressure range remains a great challenge in designing piezoresistive pressure sensors due to the irreconcilable requirements in structural deformability against extremely high pressures and piezoresistive sensitivity to very low pressures. This work proposes a hybrid aerogel/hydrogel sensor by integrating a nanotube structured polypyrrole aerogel with a polyacrylamide (PAAm) hydrogel. The aerogel is composed of durable twined polypyrrole nanotubes fabricated through a sacrificial templating approach. Its electromechanical performance can be regulated by controlling the thickness of the tube shell. A thicker shell enhances the charge mobility between tube walls and thus expedites current responses, making it highly sensitive in detecting low pressure. Moreover, a nucleotide-doped PAAm hydrogel with a reversible noncovalent interaction network is harnessed as the flexible substrate to assemble the aerogel/hydrogel hybrid sensor and overcome sensing saturation under extreme pressures. This highly stretchable and self-healable hybrid polymer sensor exhibits linear response with high sensitivity (Smin > 1.1 kPa?1), ultrabroad sensing range (0.12–≈400 kPa), and stable sensing performance over 10 000 cycles at the pressure of 150 kPa, making it an ideal sensing device to monitor pressures from human physiological signals to significant stress exerted by vehicles.  相似文献   

13.
Monolithically structured reduced graphene oxide (rGO), prepared from a highly concentrated and conductive rGO paste, is introduced as an anode material for lithium ion batteries with high rate capacities. This is achieved by a mixture of rGO paste and the water‐soluble polymer sodium carboxymethylcellulose (SCMC) with freeze drying. Unlike previous 3D graphene porous structures, the monolithic graphene resembles densely branched pine trees and has high mechanical stability with strong adhesion to the metal electrodes. The structures contain numerous large surface area open pores that facilitate lithium ion diffusion, while the strong hydrogen bonding between the graphene layers and SCMC provides high conductivity and reduces the volume changes that occur during cycling. Ultrafast charge/discharge rates are obtained with outstanding cycling stability and the capacities are higher than those reported for other anode materials. The fabrication process is simple and straightforward to adjust and is therefore suitable for mass production of anode electrodes for commercial applications.  相似文献   

14.
Externally stimuli‐triggered spatially and temporally controlled gene delivery can play a pivotal role in achieving targeted gene delivery with maximized therapeutic efficacy. In this study, a photothermally controlled gene delivery carrier is developed by conjugating low molecular‐weight branched polyethylenimine (BPEI) and reduced graphene oxide (rGO) via a hydrophilic polyethylene glycol (PEG) spacer. This PEG–BPEI–rGO nanocomposite forms a stable nano‐sized complex with plasmid DNA (pDNA), as confirmed by physicochemical studies. For the in vitro gene transfection study, PEG–BPEI–rGO shows a higher gene transfection efficiency without observable cytotoxicity compared to unmodified controls in PC‐3 and NIH/3T3 cells. Moreover, the PEG–BPEI–rGO nanocomposite demonstrates an enhanced gene transfection efficiency upon NIR irradiation, which is attributed to accelerated endosomal escape of polyplexes augmented by locally induced heat. The endosomal escaping effect of the nanocomposite is investigated using Bafilomycin A1, a proton sponge effect inhibitor. The developed photothermally controlled gene carrier has the potential for spatial and temporal site‐specific gene delivery.  相似文献   

15.
Natural wood possesses a unique 3D microstructure containing hierarchical interconnected channels along its growth direction. This study reports a facile processing strategy to utilize such structure to fabricate carbon/silicone composite based flexible pressure sensors. The unique contribution of the multichannel structure on the sensor performance is analyzed by comparing the pressure response of the vertically cut and horizontally cut composite structures. The results show that the horizontally cut composite based sensors exhibit much higher sensitivity (10.74 kPa?1) and wider linear region (100 kPa, R2 = 99%), due to their rough surface and largely deformable microstructure. Besides, the sensors also show little hysteresis and good cycle stability. The overall outstanding sensing properties of the sensors allow for accurate continuous measurement of human pulse and respiration, benefiting the real‐time health signal monitoring and disease diagnoses.  相似文献   

16.
Electrocatalysts for oxygen‐reduction and oxygen‐evolution reactions (ORR and OER) are crucial for metal–air batteries, where more costly Pt‐ and Ir/Ru‐based materials are the benchmark catalysts for ORR and OER, respectively. Herein, for the first time Ni is combined with MnO species, and a 3D porous graphene aerogel‐supported Ni/MnO (Ni–MnO/rGO aerogel) bifunctional catalyst is prepared via a facile and scalable hydrogel route. The synthetic strategy depends on the formation of a graphene oxide (GO) crosslinked poly(vinyl alcohol) hydrogel that allows for the efficient capture of highly active Ni/MnO particles after pyrolysis. Remarkably, the resulting Ni–MnO/rGO aerogels exhibit superior bifunctional catalytic performance for both ORR and OER in an alkaline electrolyte, which can compete with the previously reported bifunctional electrocatalysts. The MnO mainly contributes to the high activity for the ORR, while metallic Ni is responsible for the excellent OER activity. Moreover, such bifunctional catalyst can endow the homemade Zn–air battery with better power density, specific capacity, and cycling stability than mixed Pt/C + RuO2 catalysts, demonstrating its potential feasibility in practical application of rechargeable metal–air batteries.  相似文献   

17.
Monocrystalline ZnO nanorods (NRs) with high donor concentration are electrochemically deposited on highly conductive reduced graphene oxide (rGO) films on quartz. The film thickness, optical transmittance, sheet resistance, and roughness of rGO films are systematically studied. The obtained ZnO NRs on rGO films are characterized by X‐ray diffraction, transmission electron microscopy, photoluminescence, and Raman spectra. As a proof‐of‐concept application, the obtained ZnO NRs on rGO are used to fabricate inorganic–organic hybrid solar cells with layered structure of quartz/rGO/ZnO NR/poly(3‐hexylthiophene)/poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (P3HT/PEDOT:PSS)/Au. The observed power conversion efficiency (PCE, η), ≈ 0.31%, is higher than that reported in previous solar cells by using graphene films as electrodes. These results clearly demonstrate that rGO films with a higher conductivity have a smaller work function and show a better performance in the fabricated solar cells.  相似文献   

18.
Multivalent transition metal oxides (MOx) containing redox centers which can theoretically accept more than one electron have been suggested as promising anode materials for high‐performance lithium ion batteries (LIBs). The Li‐storage mechanism of these oxides is suggested to involve an unusual conversion reaction leading to the formation of metallic nanograins and Li2O; however, a full‐scale conversion reaction is seldom observed in molybdenum dioxide (MoO2) at room temperature due to slow kinetics. Herein, a full‐scale multi‐electron conversion reaction, leading to a high reversible capacity (974 mA h g?1 charging capacity at 60 mA g?1) in LIBs, is realized in a hybrid consisting of reduced graphene oxide (rGO) sheet‐wrapped MoO2 porous nanobelts (rGO/MoO2 NBs). The rGO wrapping layers stabilize the nanophase transition in MoO2 and alleviate volume swing effects during lithiation/delithiation processes. This enables the hybrid to exhibit great cycle stability (tested to around 1900 cycles) and ultrafast rate capability (tested up to 50 A g?1).  相似文献   

19.
Bismuth oxides are important battery materials owing to their ability to electrochemically react and alloy with Li,which results in a high capacity level,which substantially exceeds that of graphite anodes.However,this high Li-storage capability is often compromised by the poor electrochemical cyclability and rate capability of bismuth oxides.To address these challenges,in this study,we design a hybrid architecture composed of reduced graphene oxide (rGO) nanosheets decorated with ultrafine Bi2O2.33 nanodots (denoted as Bi2O2.33/rGO),based on the selective and controlled hydrolysis of a Bi precursor on graphene oxide and subsequent crystallization via solvothermal treatment.Because of its high conductivity,large accessible area,and inherent flexibility,the Bi2O2.33/rGO hybrid exhibits stable and robust Li storage (346 mA·h·g-1 over 600 cycles at 10 C),significantly outperforming previously reported Bi-based materials.This superb performance indicates that decorating rGO nanosheets with ultrafine nanodots may introduce new possibilities for the development of stable and robust metal-oxide electrodes.  相似文献   

20.
Flexible pressure sensors as electronic skins have attracted wide attention to their potential applications for healthcare and intelligent robotics. However, the tradeoff between their sensitivity and pressure range restricts their practical applications in various healthcare fields. Herein, a cost‐effective flexible pressure sensor with an ultrahigh sensitivity over an ultrawide pressure‐range is developed by combining a sandpaper‐molded multilevel microstructured polydimethylsiloxane and a reduced oxide graphene film. The unique multilevel microstructure via a two‐step sandpaper‐molding method leads to an ultrahigh sensitivity (2.5–1051 kPa?1) and can detect subtle and large pressure over an ultrawide range (0.01–400 kPa), which covers the overall pressure regime in daily life. Sharp increases in the contact area and additional contact sites caused by the multilevel microstructures jointly contribute to such unprecedented performance, which is confirmed by in situ observation of the gap variations and the contact states of the sensor under different pressures. Examples of the flexible pressure sensors are shown in potential applications involving the detection of various human physiological signals, such as breathing rate, vocal‐cord vibration, heart rate, wrist pulse, and foot plantar pressure. Another object manipulation application is also demonstrated, where the material shows its great potential as electronic skin intelligent robotics and prosthetic limbs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号