首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
以聚酰胺(PA6)为基体,氮化硅(SiC)为导热填料,钛酸钡(BT)为介电填料,通过热压法制备出系列复合材料;研究了不同粒径填料的搭配对材料导热与介电性能的影响。结果表明:在填充量较低时,使用混合粒径导热填料能产生一定的级配效应,从而提高复合材料的导热性能。总填充量为26%时,以4∶1的比例,用粒径为0.5~0.7μm和3μm的SiC共同填充PA6,制备获得了最高导热系数为0.9198W/(m·K)的复合材料,而不同粒径、不同功能的混合功能填料还能产生协同效应,进一步提升材料的导热性能并使材料同时获得较好的介电性能,当SiC填充量为20%,BT填充量为20%时,复合材料的导热系数达到1.1110W/(m·K),介电常数到达16(100Hz),损耗保持在0.075(100Hz)左右。  相似文献   

2.
《Polymer Composites》2017,38(4):803-813
Significant progress has been made recently in developing the organic–inorganic composites with high thermal conductivity, low dielectric constant, and dielectric loss, for applications in the electronic packaging and substrates. Many studies have shown that some polymers filled with high thermal conductivity and low dielectric loss ceramics are suitable for electronic packaging for device encapsulation. Until now, extensive attentions have been paid to the preparation of polymeric composites with high thermal conductivity and low dielectric loss for the application in electronic packaging. In contrast, the thermal conductivities of these dielectric materials are still not high enough and that might restrict their serviceable range. Herein, we briefly reviewed recent progress in this field and introduced a kind of novel composites with surface insulation modified metal aluminum cores to form multilayer coating structures as fillers in polyimide matrix for electronic applications. This structure can significantly improve the thermal conductivity and dielectric properties of composites and give some insights into the effects of modified fillers of composite materials. Such multilayer core–shell structures should have great potentials for the improvement of nanoparticle‐based fillers and applications of electronic packaging. POLYM. COMPOS., 38:803–813, 2017. © 2015 Society of Plastics Engineers  相似文献   

3.
环氧树脂/氧化锌晶须/氮化硼导热绝缘复合材料的研究   总被引:6,自引:0,他引:6  
以环氧树(脂EP)为基体,分别以氧化锌晶(须ZnOw)和ZnOw/氮化硼(BN)混合物为导热填料,制备了EP导热绝缘复合材料。研究了填料含量对复合材料导热性能、电绝缘性能及力学性能的影响,并利用扫描电镜对复合材料的断面形貌进行了观察。结果表明:随着导热填料含量的增大,复合材料的导热系数和介电常数增大,体积电阻率下降,而拉伸强度呈先增大后减小的趋势;在填料含量相同的情况下,EP/ZnOw/BN复合材料比EP/ZnOw复合材料具有更好的导热性能;当填料体积分数为15%时,EP/ZnOw/BN复合材料的热导率为1.06W/(mK)而,EP/ZnOw复合材料的热导率仅为0.98W/(mK)。  相似文献   

4.
Three composites based on cyanate (CE) resin, aluminum nitride (AlN), surface‐treated aluminum nitride [AlN(KH560)], and silicon dioxide (SiO2) for microelectronic packaging, coded as AlN/CE, AlN(KH560)‐SiO2(KH560)/CE, and AlN‐SiO2/CE composite, respectively, were developed for the first time. The thermal conductivity and dielectric constant of all composites were investigated in detail. Results show that properties of fillers in composites have great influence on the thermal conductivity and dielectric constant of composites. Surface treatment of fillers is beneficial to increase the thermal conductivity or reduce dielectric constant of the composites. Comparing with binary composite, when the filler content is high, ternary composites possess lower thermal conductivity and dielectric constant. The reasons leading to these outcomes are discussed intensively. POLYM. COMPOS., 2010. © 2009 Society of Plastics Engineers  相似文献   

5.
A novel polymeric coating with high thermal conductivity was prepared using a hydroxyl-terminated polydimethylsiloxane-modified epoxy resin and hybrid aluminum nitride (AlN) particles with various sizes. It was found that the coating exhibited a maximum thermal conductivity of 1.78 W/m K at 50 wt% filler content and a preferable mass ratio. This was a result of the synergistic effect of hybrid fillers giving rise to a better heat conduction capability as opposed to a coating without fillers. Furthermore, thermogravimetric analysis revealed that the coating exhibited an excellent high temperature resistance owing to the modified matrix and interaction between filler and matrix; and a dielectric study demonstrated that the dielectric constant, volume resistivity and dielectric strength of the coating at 50 wt% filler concentration were 5.6, 8.2 × 1013 Ω·cm and 12 kV/mm, respectively. In addition, the mechanical properties declined obviously with filler content.  相似文献   

6.
综述了非常规新型导热粒子如纳米金刚石、碳化物、铁电陶瓷及其他无机功能粒子及其填充聚合物电介质的最新研究进展,重点探讨了新型导热粒子的含量、表面改性、加工方式等对聚合物复合材料的导热及介电性能的影响。介绍和分析了基于有机分子晶体为连续声子传递通路改性聚合物导热性能的研究及机理;在基体树脂内利用无机导热粒子及有机分子晶体可构筑连续的声子导热通路,从而达到降低界面热阻、提高体系热导率的目的。相比传统导热粒子,新型导热粒子在提高绝缘聚合物热导率的同时,还赋予体系其他物理性能如磁性、优良介电性能及储能等性能。  相似文献   

7.
A method to enhance the thermal dissipation of epoxies is described. The method exploits the transport of heat by phonons so that the composite material designed remains dielectric. The improvement in thermal transport is guaranteed by the addition of functionalized carbon nanotube fillers which are covalently bonded to the epoxy matrix. We demonstrate that even if the covalent grafting of functional molecules affects the thermal transport within the nanotubes because of the disruption in periodicity of the structure, it improves the interfacial thermal conductance between the matrix and fillers. The trade-off has a net positive impact on the effective thermal conductivity of the composite material.  相似文献   

8.
This report traces the leading scientific endeavors to enhance the dielectric strength of polymer dielectrics for energy storage and electrical insulation applications. Remarkable progress has occurred over the past 15 years through nanodielectric engineering involving inorganic nanofillers, coatings, and polymer matrices. This article highlights the challenges of dielectric polymers primarily toward capacitors and cable/wire insulation. It also summarizes several major technical approaches to enhance the dielectric strength of polymers and nanocomposites, including nanoparticle incorporation in polymers, filler-polymer interface engineering, and film surface coating. More attention is directed to interface contributions, including rational design of core-shell structures, use of low-dimensional fillers and thermally conducting fillers, and inorganic surface coating of polymer films. These efforts demonstrated the enhancement in dielectric strength by 40–160% when controlling the fillers below 5 wt% in polyvinylidenedifluoride (PVDF) composites. This article also discussed the possible dielectric mechanisms and the positive role of interfaces against charge transport traps for attaining higher breakdown strength. The investigation of low-dimensional filler/coating materials of high thermal conductivity can be key scientific subjects for future research.  相似文献   

9.
以聚偏氟乙烯(PVDF)树脂为基体,天然鳞片石墨(FG)、碳纤维(CF)为填料,采用熔融共混法制备了PVDF/FG/CF复合导热材料,并研究了FG、CF含量及其改性对复合材料导热性能和力学性能的影响。结果表明,复合材料的热导率随FG含量的增加而增大,力学性能随着FG含量的增加而降低;CF的加入提高了复合材料的力学性能,但热导率略有降低;对CF进行表面氧化处理将使得复合材料的热导率以及力学性能有所提高,当CF含量为5 %、FG含量为50 %时,复合材料的热导率为11.4 W/(m·K),拉伸强度为48 MPa,断裂伸长率为11 %。  相似文献   

10.
We synthesized an epoxy matrix composite adhesive containing aluminum nitride (AlN) powder, which was used for thermal interface materials (TIM) in high power devices. The experimental results revealed that adding AlN fillers into epoxy resin was an effective way to boost thermal conductivity and maintain electrical insulation. We also discovered a proper coupling agent that reduced the viscosity of the epoxy‐AlN composite by AlN surface treatment and increased the solid loading to 60 vol %. For the TIM sample made with the composite adhesive, we obtained a thermal conductivity of 2.70 W/(m K), which was approximately 13 times larger than that of pure epoxy. The dielectric strength of the TIM was 10 to 11 kV/mm, which was large enough for applications in high power devices. Additionally, the thermal and insulating properties of the TIM did not degrade after thermal shock testing, indicating its reliability for use in power devices. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

11.
以酒石酸为改性剂,对钛酸钡(BT)颗粒进行表面改性,制备了聚丙烯(PP)/纳米氧化铝(Al2O3)/改性BT系列3相复合材料.通过傅里叶红外光谱、扫描电子显微镜、介电频谱仪、导热分析仪对复合材料的红外光谱、微观形貌、介电性能、导热性能等进行分析表征.结果表明,酒石酸对BT颗粒的表面改性能有效改善BT、Al2O3等无机填...  相似文献   

12.
Di CAI  Jing LI 《化工学报》1951,71(10):4826-4835
Adding high thermal conductivity fillers to n-octadecane to form a composite phase change material(PCM) can improve its thermal conductivity. At the same time, to ensure high thermal conductivity, dispersion stability and recycling reliability of PCM, a type of composite PCM has been fabricated by grafting stearic alcohol onto graphene oxide (GO). The modified graphene/n-octadecane composite PCMs with 0, 1%, 2%, 3% and 4%(mass) of modified graphene were prepared to characterize and study of feature structure and thermophysical properties by means of scanning electron microscope, infrared spectrum analysis, differential scanning calorimetry and thermal conductivity analysis, etc. Experiments show that the modified graphene/n-octadecane composite PCMs prepared in this paper has good dispersion stability. When the mass fraction of modified graphene reaches 4%, the thermal conductivity of composite PCMs is 131.9% higher than that of pure n-octadecane.  相似文献   

13.
蔡迪  李静 《化工学报》2020,71(10):4826-4835
向正十八烷中加入高导热填充物形成复合相变材料(PCM),可以很好地提升其导热性能,同时,为了保证符合相变材料的高热导率、分散性和再循环可靠性,利用硬脂醇修饰氧化石墨烯(GO),形成改性石墨烯(MG)与正十八烷的复合相变材料。分别制备了改性石墨烯质量分数为0、1%、2%、3%、4%(质量)的改性石墨烯/正十八烷复合相变材料,并经过扫描电镜测试、红外光谱分析、差示扫描量热实验及导热分析等测试对其形貌结构及热物性进行表征和研究。实验表明制备的改性石墨烯/正十八烷复合相变材料具有很好的分散性;当纳米石墨烯片的质量分数达到4%时,复合相变材料的热导率相对于纯正十八烷高出了131.9%。  相似文献   

14.
研制了一种3层复合结构的油气储罐用降温节能涂料,介绍了复合涂层的制备方法,考察了树脂种类,颜填料粒径、含量、表面处理等对隔热防腐涂料性能的影响,以热反射率、热导率和热发射率表征了其隔热性能。结果表明,以环氧防腐底漆配合聚氨酯树脂隔热中涂层和热反射表面涂层,使用合适的功能性颜填料,可以使复合涂层获得理想的防腐和隔热效果。涂层的热反射率:白色为91.1%,灰色为78.5%。隔热中涂热导系数为0.08W/(m·K),热发射率为93.5%。涂装该隔热复合涂层的铁桶其内部温度降低8~10°C,外部表面温度降低12~20°C。  相似文献   

15.
用季戊四醇、丙三醇和钛酸酯偶联剂分别对氧化铝、氧化镁和高岭土进行表面改性,并将改性填料填充天然橡胶(NR)制备了导热复合材料,考察了表面处理剂种类及其用量对无机填料的影响,并研究了季戊四醇改性氧化铝填充NR复合材料的硫化特性、物理机械性能和导热性能.结果表明,3种填料中季戊四醇的改性效果最好,且其用量为1.0~1.5份时对氧化铝的改性效果最佳;随着改性氧化铝填充量的增加,复合材料的最大转矩、300%定伸应力、拉伸强度和热导率均增大,当其用量为60份时,改性氧化铝填充NR复合材料的热导率比未填充NR复合材料提高了23.9%.  相似文献   

16.
A simple method is reported to increase the thermal conductivity and improve the poor mechanical properties caused by high filler loadings of epoxy composites, simultaneously. Epoxy composites were prepared with micro‐boron nitride (BN) and silicon carbon whisker (SiCw) chemically treated by 3‐aminopropyltriethoxysilane (KH550) and 3‐glycidyloxypropyltrimethoxysilane (KH560), respectively. Effects of surface modification of BN particles on the thermal conductivity and flexural strength of epoxy/BN composites were investigated. About 3% SiCw particles grafted with KH560 were incorporated into composites with BN grafted with KH550, which led to about 13.8–17.8% increase of the flexural strength as well as a marginal improvement of the thermal conductivity of composites, and they possessed good dielectric properties. In addition, dynamic mechanical analysis results showed that the storage modulus of composites increased significantly with the addition of fillers, while the glass transition temperature exhibited a slight decrease. POLYM. COMPOS., 37:2611–2621, 2016. © 2015 Society of Plastics Engineers  相似文献   

17.
To fulfill the demands of more bandwidth in 5G and 6G communication technology, new dielectric substrates that can be co-fired into packages and devices that have low dielectric loss and improved thermal conductivity are desired. The motivation for this study is to design composites with low dielectric loss (tan δ) and high thermal conductivity (κ), while still limiting the electrical conductivity, for microwave applications involving high power and high frequency. This work describes the fabrication of high-density electroceramic composites with a model dielectric material for cold sintering, namely sodium molybdate (Na2Mo2O7), and fillers with higher thermal conductivity such as hexagonal boron nitride. The physical properties of the composites were characterized as a function of filler vol.%, temperature, and frequency. Understanding the variation in measured properties is achieved through analyzing the respective transport mechanisms.  相似文献   

18.
Due to its extreme hardness, chemical and mechanical stability, large band gap, low dielectric constant and highest thermal conductivity, diamond film is expected to be an excellent electronic packaging material for high frequency and high power devices. Under an alcohol concentration of 0.8% and a substrate temperature of 850 °C, high quality diamond films deposited on alumina are obtained by hot filament chemical vapor deposition (HFCVD) method using the optimum parameters determined by an infrared spectroscopic ellipsometer. Prior to the deposition of diamond film, carbon ions are implanted into alumina wafers to release the residual stress between interfaces. The measurement results indicate that dielectric properties and the thermal conductivity of diamond film/alumina composites are improved further with the increase of diamond coating. When the thickness of diamond coating is up to 100 μm, dielectric constant and dielectric loss of diamond film/alumina composite are 6.5 and 1.1 × 10 3, respectively. However, a thermal conductivity of 3.98 W/cm·K is obtained.  相似文献   

19.
Based on modified silicon polyester resin in addition to several functional fillers such as corro-sion-resistant fillers, heat-resistant fillers and thermal conductive fillers, a high thermal conductive coating can be made. On the basis of boronnitride (BN) and aluminum nitride (AIN) used as thermal conductive fillers and by means of the testing system of hot disk and heat transfer experiment, researches on the varieties of thermal conduc-tive fillers and the effects of the contents of high-thermal conductive coating have been done, which shows that the thermal conductivity of coating increases with the increase of the quality fraction and the coefficient of thermal conductivity of the thermal conductive fillers of coating. With guaranteeing better heat resistance, stronger corro-sion resistance and adhesive force, the coefficient of coating can reach a level as high as 3 W·m^-1·K^-1.  相似文献   

20.
The silicon carbide whisker (SiCw) and silicon carbide particle (SiCp) were employed to prepare polystyrene/silicon carbide whisker/silicon carbide particle (PS/SiCw/SiCp) thermal conductivity composites, and the titanate coupling reagent of NDZ‐105 was introduced to functionalize the surface of fillers. The thermal conductive coefficient λ improved from 0.18 W/mK for native PS to 1.29 W/mK for the composites with 40% volume fraction of SiCw/SiCp (volume fraction, 3 : 1) hybrid fillers. Both the thermal decomposition temperature and dielectric constant of the composites increased with the addition of SiCw/SiCp hybrid fillers. At the same addition of SiCw/SiCp hybrid fillers, the surface modification of hybrid fillers by NDZ‐105 could improve the thermal conductivity and the mechanical properties of the composites. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号