首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Resistive switching phenomena form the basis of competing memory technologies. Among them, resistive switching, originating from oxygen vacancy migration (OVM), and ferroelectric switching offer two promising approaches. OVM in oxide films/heterostructures can exhibit high/low resistive state via conducting filament forming/deforming, while the resistive switching of ferroelectric tunnel junctions (FTJs) arises from barrier height or width variation while ferroelectric polarization reverses between asymmetric electrodes. Here the authors demonstrate a coexistence of OVM and ferroelectric induced resistive switching in a BaTiO3 FTJ by comparing BaTiO3 with SrTiO3 based tunnel junctions. This coexistence results in two distinguishable loops with multi‐nonvolatile resistive states. The primary loop originates from the ferroelectric switching. The second loop emerges at a voltage close to the SrTiO3 switching voltage, showing OVM being its origin. BaTiO3 based devices with controlled oxygen vacancies enable us to combine the benefits of both OVM and ferroelectric tunneling to produce multistate nonvolatile memory devices.  相似文献   

2.
Resistive random‐access memory (RRAM) is a promising candidate for next‐generation nonvolatile random‐access memory protocols. The information storage in RRAM is realized by the resistive switching (RS) effect. The RS behavior of ferroelectric heterostructures is mainly controlled by polarization‐dominated and defect‐dominated mechanisms. Under certain conditions, these two mechanisms can have synergistic effects on RS behavior. Therefore, RS performance can be effectively improved by optimizing ferroelectricity, conductivity, and interfacial structures. Many methods have been studied to improve the RS performance of ferroelectric heterostructures. Typical approaches include doping elements into the ferroelectric layer, controlling the oxygen vacancy concentration and optimizing the thickness of the ferroelectric layer, and constructing an insertion layer at the interface. Here, the mechanism of RS behavior in ferroelectric heterostructures is briefly introduced, and the methods used to improve RS performance in recent years are summarized. Finally, existing problems in this field are identified, and future development trends are highlighted.  相似文献   

3.
Resistive random access memory (RRAM) is one of the most promising candidates that satisfies the requirements of new generation non-volatile memories, as a consequence of its high density, outstanding scalability, and low power consumption. The review is based on a summary of recent studies in ferroelectric oxides based resistive switching (RS) materials and devices. It highlights the various ferroelectric oxide materials with RS behaviour and the underlying mechanisms including filament-type and interface-type mechanism. In the end, the challenge in current RRAM for future high-density data storage applications is addressed.  相似文献   

4.
In this study, Cu/ZnO0.4S0.6Al devices are fabricated on plastic substrates using the sputtering method at room temperature. The ratio of O/S in the zinc oxysulfide thin film is confirmed to be 0.4/0.6 from the Auger depth profiling. The Cu/ZnO0.4S0.6/Al devices show unipolar resistive switching behaviors and the ratio of the measured resistance in the low-resistance state (LRS) to that in the high-resistance state (HRS) is above 10(4). The conduction mechanism of the LRS is governed by Ohm's law. On the other hand, in the HRS, the conduction mechanism at low voltages is controlled by Ohm's law, but that at high voltages results from the Poole-Frenkel emission mechanism. The Ohmic and Poole-Frenkel conduction mechanisms observed in the LRS and HRS support the filament model of unipolar resistive switching. The memory characteristics of the Cu/ZnO0.4S0.6/Al devices are retained for 10(4) sec without any change.  相似文献   

5.
Complementary resistive switches (CRS) were recently suggested to solve the sneak path problem of larger passive memory arrays. CRS cells consist of an antiserial setup of two bipolar resistive switching cells. The conventional destructive readout for CRS cells is based on a current measurement which makes a considerable call on the switching endurance. Here, we report a new approach for a nondestructive readout (NDRO) based on a capacity measurement. We suggest a concept of an alternative setup of a CRS cell in which both resistive switching cells have similar switching properties but are distinguishable by different capacities. The new approach has the potential of an energy saving and fast readout procedure without decreasing cycling performance and is not limited by the switching kinetics for integrated passive memory arrays.  相似文献   

6.
Bismuth ferrite (BiFeO3, BFO) thin films were spin-coated on Pt/Ti/SiO2/Si substrates by a chemical solution deposition method. The ferroelectric BFO films annealed at 500 °C and 550 °C were found to possess unipolar resistive switching behaviors. The resistance ratio of the high resistance state (HRS) to the low resistance state (LRS) of the unipolar resistance switching is about 103 for the ferroelectric BFO films. The conduction mechanisms are concluded to be space charge-limited conduction for the initial state and Ohmic conduction for the LRS. As for the HRS, the Poole-Frenkel emission fits well in the whole voltage region. Traps composed of oxygen vacancies are considered to play a key role in forming conducting paths. The relaxation time of electronic carriers is much shorter than that of ionic oxygen vacancies; therefore, the resistance switching is considered more probably due to carrier injection and emission through the Poole-Frenkel model after forming.  相似文献   

7.
Flexible non‐volatile memories have attracted tremendous attentions for data storage for future electronics application. From device perspective, the advantages of flexible memory devices include thin, lightweight, printable, foldable and stretchable. The flash memories, resistive random access memories (RRAM) and ferroelectric random access memory/ferroelectric field‐effect transistor memories (FeRAM/FeFET) are considered as promising candidates for next generation non‐volatile memory device. Here, we review the general background knowledge on device structure, working principle, materials, challenges and recent progress with the emphasis on the flexibility of above three categories of non‐volatile memories.  相似文献   

8.
Tunnel junctions with multiferroic barriers   总被引:2,自引:0,他引:2  
Multiferroics are singular materials that can exhibit simultaneously electric and magnetic orders. Some are ferroelectric and ferromagnetic and provide the opportunity to encode information in electric polarization and magnetization to obtain four logic states. However, such materials are rare and schemes allowing a simple electrical readout of these states have not been demonstrated in the same device. Here, we show that films of La(0.1)Bi(0.9)MnO(3) (LBMO) are ferromagnetic and ferroelectric, and retain both ferroic properties down to a thickness of 2 nm. We have integrated such ultrathin multiferroic films as barriers in spin-filter-type tunnel junctions that exploit the magnetic and ferroelectric degrees of freedom of LBMO. Whereas ferromagnetism permits read operations reminiscent of magnetic random access memories (MRAM), the electrical switching evokes a ferroelectric RAM write operation. Significantly, our device does not require the destructive ferroelectric readout, and therefore represents an advance over the original four-state memory concept based on multiferroics.  相似文献   

9.
采用直流磁控溅射法在n+-Si上制备了TiO2薄膜,采用电子束蒸发镀膜仪在TiO2薄膜上沉积Au电极,获得了Au/TiO2/n+-Si结构的器件.研究了退火温度对薄膜结晶性能及器件电阻开关特性的影响.Au/TiO2/n+-Si结构的器件具有单极性电阻开关特性,置位(set)电压,复位(reset)电压、reset电流及功率的大小随退火温度的不同而不同,并基于灯丝理论对器件的电阻开关效应的工作机理进行了探讨.研究结果表明,500℃退火的器件具有良好的非易失性.器件高低阻态的阻值比大于103,其信息保持特性可达10年之久.在读写次数为100次时,器件仍具有电阻开关效应.  相似文献   

10.
We report the forming-free unipolar resistive switching effects in polycrystalline BiFe0.95Co0.05O3 films which were spin-coated on ITO/glass substrates by a chemical solution deposition method. The resistive ratio of the high resistive state (HRS) to the low resistive state (LRS) is more than 2 orders of magnitude. The conduction of the HRS is dominated by the space-charge-limited conduction mechanism, while Ohmic behavior dominates the LRS, which suggests a filamentary conduction mechanism. The oxygen vacancies are considered to play an important role in forming the conducting filaments.  相似文献   

11.
Spin-polarized transport in ferromagnetic tunnel junctions, characterized by tunnel magnetoresistance, has already been proven to have great potential for application in the field of spintronics and in magnetic random access memories. Until recently, in such a junction the insulating barrier played only a passive role, namely to facilitate electron tunnelling between the ferromagnetic electrodes. However, new possibilities emerged when ferroelectric materials were used for the insulating barrier, as these possess a permanent dielectric polarization switchable between two stable states. Adding to the two different magnetization alignments of the electrode, four non-volatile states are therefore possible in such multiferroic tunnel junctions. Here, we show that owing to the coupling between magnetization and ferroelectric polarization at the interface between the electrode and barrier of a multiferroic tunnel junction, the spin polarization of the tunnelling electrons can be reversibly and remanently inverted by switching the ferroelectric polarization of the barrier. Selecting the spin direction of the tunnelling electrons by short electric pulses in the nanosecond range rather than by an applied magnetic field enables new possibilities for spin control in spintronic devices.  相似文献   

12.
Neuromorphic computing consisting of artificial synapses and neural network algorithms provides a promising approach for overcoming the inherent limitations of current computing architecture. Developments in electronic devices that can accurately mimic the synaptic plasticity of biological synapses, have promoted the research boom of neuromorphic computing. It is reported that robust ferroelectric tunnel junctions can be employed to design high-performance electronic synapses. These devices show an excellent memristor function with many reproducible states (≈200) through gradual ferroelectric domain switching. Both short- and long-term plasticity can be emulated by finely tuning the applied pulse parameters in the electronic synapse. The analog conductance switching exhibits high linearity and symmetry with small switching variations. A simulated artificial neural network with supervised learning built from these synaptic devices exhibited high classification accuracy (96.4%) for the Mixed National Institute of Standards and Technology (MNIST) handwritten recognition data set.  相似文献   

13.
The plethora of lattice and electronic behaviors in ferroelectric and multiferroic materials and heterostructures opens vistas into novel physical phenomena including magnetoelectric coupling and ferroelectric tunneling. The development of new classes of electronic, energy‐storage, and information‐technology devices depends critically on understanding and controlling field‐induced polarization switching. Polarization reversal is controlled by defects that determine activation energy, critical switching bias, and the selection between thermodynamically equivalent polarization states in multiaxial ferroelectrics. Understanding and controlling defect functionality in ferroelectric materials is as critical to the future of oxide electronics and solid‐state electrochemistry as defects in semiconductors are for semiconductor electronics. Here, recent advances in understanding the defect‐mediated switching mechanisms, enabled by recent advances in electron and scanning probe microscopy, are discussed. The synergy between local probes and structural methods offers a pathway to decipher deterministic polarization switching mechanisms on the level of a single atomically defined defect.  相似文献   

14.
Pure-phase polycrystalline BiFeO3 films have been successfully prepared by pulsed-laser deposition on surface oxidized Si substrates using LaNiO3 buffer layer with substrate temperature (T s) ranging from 550?°C to 800?°C and a laser frequency of 5?Hz and 10?Hz. Bipolar resistive switching has been observed in all the films using LaNiO3 as bottom electrodes and silver glue dots as top electrodes, the resistivity switches from a high-resistance state (HRS) to a low-resistance state (LRS) with positive voltage applied on the top Ag electrodes, and from LRS to HRS with positive voltage applied on the bottom LaNiO3 electrodes. The mechanism of the resistive switching has been confirmed to be due to the voltage polarity dependent formation/rupture of the conducting filaments formed by the O vacancies. The highest resistive ratio of HRS to LRS, of more than 2 orders of magnitude, has been achieved in the highest resistive BiFeO3 film prepared at T s of 650?°C and laser frequency of 10?Hz.  相似文献   

15.
Recently, ferroelectric tunnel junctions (FTJs) have attracted considerable attention for potential applications in next-generation memories, owing to attractive advantages such as high-density of data storage, nondestructive readout, fast write/read access, and low energy consumption. Herein, recent progress regarding FTJ devices is reviewed with an emphasis on the modulation of the potential barrier. Electronic and ionic approaches that modulate the ferroelectric barriers themselves and/or induce extra barriers in electrodes or at ferroelectric/electrode interfaces are discussed with the enhancement of memory performance. Emerging physics, such as nanoscale ferroelectricity, resonant tunneling, and interfacial metallization, and the applications of FTJs in nonvolatile data storage, neuromorphic synapse emulation, and electromagnetic multistate memory are summarized. Finally, challenges and perspectives of FTJ devices are underlined.  相似文献   

16.
Graphene oxide (GO)‐based resistive‐switching (RS) memories offer the promise of low‐temperature solution‐processability and high mechanical flexibility, making them ideally suited for future flexible electronic devices. The RS of GO can be recognized as electric‐field‐induced connection/disconnection of nanoscale reduced graphene oxide (RGO) conducting filaments (CFs). Instead of operating an electrical FORMING process, which generally results in high randomness of RGO CFs due to current overshoot, a TiO2‐assisted photocatalytic reduction method is used to generate RGO‐domains locally through controlling the UV irradiation time and TiO2 concentration. The elimination of the FORMING process successfully suppresses the RGO overgrowth and improved RS memory characteristics are achieved in graphene oxide–TiO2 (Go‐TiO2) nanocomposites, including reduced SET voltage, improved switching variability, and increased switching speed. Furthermore, the room‐temperature process of this method is compatible with flexible plastic substrates and the memory cells exhibit excellent flexibility. Experimental results evidence that the combined advantages of reducing the oxygen‐migration barrier and enhancing the local‐electric‐field with RGO‐manipulation are responsible for the improved RS behaviors. These results offer valuable insight into the role of RGO‐domains in GO memory devices, and also, this mild photoreduction method can be extended to the development of carbon‐based flexible electronics.  相似文献   

17.
The silver‐embedded gelatin (AgG) thin film produced by the solution method of metal salts dissolved in gelatin is presented. Its simple fabrication method ensures the uniform distribution of Ag dots. Memory devices based on AgG exhibit good device performance, such as the ON/OFF ratio in excess of 105 and the coefficient of variation in less of 50%. To further investigate the position of filament formation and the role of each element, current sensing atomic force microscopy (CSAFM) analysis as well as elemental line profiles across the two different conditions in the LRS and HRS are analyzed. The conductive and nonconductive regions in the current map of the CSAFM image show that the conductive filaments occur in the AgG layer around Ag dots. The migration of oxygen ions and the redox reaction of carbon are demonstrated to be the driving mechanism for the resistive switching of AgG memory devices. The results show that dissolving metal salts in gelatin is an effective way to achieve high‐performance organic–electronic applications.  相似文献   

18.
This review summarizes the mechanism and performance of metal oxide based resistive switching memory The origin of resistive switching(RS) behavior can be roughly classified into the conducting filament type and the interface type. Here,we adopt the filament type to study the metal oxide based resistive switching memory,which considers the migration of metallic cations and oxygen vacancies,as well as discuss two main mechanisms including the electrochemical metallization effect(ECM) and valence change memory effect(VCM). At the light of the influence of the electrode materials and switching layers on the RS characteristics,an overview has also been given on the performance parameters including the uniformity endurance,the retention,and the multi-layer storage. Especially,we mentioned ITO(indium tin oxide electrode and discussed the novel RS characteristics related with ITO. Finally,the challenges resistive random access memory(RRAM) device is facing,as well as the future development trend,are expressed.  相似文献   

19.
Conductive filaments (CFs)‐based resistive random access memory possesses the ability of scaling down to sub‐nanoscale with high‐density integration architecture, making it the most promising nanoelectronic technology for reclaiming Moore's law. Compared with the extensive study in inorganic switching medium, the scientific challenge now is to understand the growth kinetics of nanoscale CFs in organic polymers, aiming to achieve controllable switching characteristics toward flexible and reliable nonvolatile organic memory. Here, this paper systematically investigates the resistive switching (RS) behaviors based on a widely adopted vertical architecture of Al/organic/indium‐tin‐oxide (ITO), with poly(9‐vinylcarbazole) as the case study. A nanoscale Al filament with a dynamic‐gap zone (DGZ) is directly observed using in situ scanning transmission electron microscopy (STEM) , which demonstrates that the RS behaviors are related to the random formation of spliced filaments consisting of Al and oxygen vacancy dual conductive channels growing through carbazole groups. The randomicity of the filament formation can be depressed by introducing a cone‐shaped contact via a one‐step integration method. The conical electrode can effectively shorten the DGZ and enhance the localized electric field, thus reducing the switching voltage and improving the RS uniformity. This study provides a deeper insight of the multiple filamentary mechanisms for organic RS effect.  相似文献   

20.
Nontrivial topological polar textures in ferroelectric materials, including vortices, skyrmions, and others, have the potential to develop ultrafast, high-density, reliable multilevel memory storage and conceptually innovative processing units, even beyond the limit of binary storage of 180° aligned polar materials. However, the realization of switchable polar textures at room temperature in ferroelectric materials integrated directly into silicon using a straightforward large area fabrication technique and effectively utilizing it to design multilevel programable memory and processing units has not yet been demonstrated. Here, utilizing vector piezoresponse force and conductive atomic force microscopy, microscopic evidence of the electric field switchable polar nanotexture is provided at room temperature in HfO2-ZrO2 nanolaminates grown directly onto silicon using an atomic layer deposition technique. Additionally, a two-terminal Au/nanolaminates/Si ferroelectric tunnel junction is designed, which shows ultrafast (≈83 ns) nonvolatile multilevel current switching with high on/off ratio (>106), long-term durability (>4000 s), and giant tunnel electroresistance (108%). Furthermore, 14 Boolean logic operations are tested utilizing a single device as a proof-of-concept for reconfigurable logic-in-memory processing. The results offer a potential approach to “processing with polar textures” and addressing the challenges of developing high-performance multilevel in-memory processing technology by virtue of its fundamentally distinct mechanism of operation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号