首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
《工业材料与腐蚀》2018,69(10):1375-1388
  相似文献   

2.
3.
The structure of heterogeneous Al–Cu–Fe coatings produced by electron beam physical vapour deposition was studied. The coating compositions were varied close to the optimal composition of icosahedral phase. Axial textures of both icosahedral and β-cubic phase were observed. The type of axial texture of quasicrystalline component correlates with the texture type of the crystalline phase.  相似文献   

4.
5.
The present paper focuses on the study of SCC behaviour of a new Al–Cu–Li alloy. For this purpose, two conventional media – NaCl and NaCl + H2O2 – were used for comparison with commercial alloys 7075 and 8090. This new alloy shows lower susceptibility to SCC than conventional alloys as it does not undergo environmentally-induced embrittlement in NaCl solutions and in 1 M NaCl + 0.3% H2O2 in which the 7075 and 8090 alloys, respectively, undergo environmentally-induced fracture.Solution composition was modified in order to determine the environmental conditions and strain rates under which this new alloy will crack due to a stress corrosion cracking phenomenon. The addition of 0.6 M sulphates to 1 M NaCl + 0.3% H2O2 solution allows the definition of a range of strain rate (between 10−7 and 10−6 s−1) in which this new alloy undergoes stress corrosion cracking.  相似文献   

6.
    
《工业材料与腐蚀》2018,69(5):634-640
  相似文献   

7.
    
The influence of strontium (Sr) additions in the form of Mg–Sr master alloys from 0 to 0.6 wt% on the mechanical properties, corrosive nature, and microstructure of Al–9.2Mg–0.7Mn alloys is investigated. The material is studied in a fully annealed (O‐temper) and a sensitizing treatment at 150°C for 7 days. Here we demonstrate that there will be a new phase which might be (Al, Mg)17Sr2 formed in the as‐cast microstructure. When the Sr content is 0.2 wt%, under the premise that the mechanical properties of completely annealed alloy change little (relative to the matrix: the ultimate tensile strength increases by 8 MPa and the elongation only decrease by 1.6%), the intergranular corrosion resistance is significantly improved. The specific performance is that the mass loss from intergranular corrosion decreases by more than 53% from the addition of 0.2 wt% Sr after sensitizing.  相似文献   

8.
9.
A part of the Al–Pd–Mn phase diagram in the vicinity of the icosahedral phase was refined. Partial isothermal sections of 710, 850, 870 and 880°C are presented. The overall compositional range of the icosahedral phase was found to be between 5.8 and 10.5 at.% Mn and between 69.5 and 71.5 at.% Al at these temperatures. It shifts to lower Mn concentration at lower temperatures. It was confirmed that the phase usually designated Al3Pd has a lower Al concentration in the binary alloys than that according to the formula. It extends to the ternary compositions up to about 5 at.% Mn. The increase of the Mn content results in an increase of the Al concentration of this phase.  相似文献   

10.
    
  相似文献   

11.
    
The paper aims at characterizing the influence of intermetallic compounds on the corrosion localization of innovative Al–Si–Mg Er‐ and Zr‐containing casting alloys. Samples of the investigated materials were studied by means of optical and scanning electron microscope micrographs, immersion tests, and scanning Kelvin probe force microscope (SKPFM) analyses in the T6 temper. Combination of immersion tests and SKPFM analyses allowed to identify those classes of intermetallic compounds promoting localization of the corrosion process. It was found that intermetallic compounds richer in Fe were the most critical for corrosion localization; furthermore, additions of Er caused a marked decrease of the potential difference of intermetallic compounds with respect to the Al matrix and a consequent less intense microgalvanic coupling, which translates into slower corrosion kinetics. Further, Zr additions slightly increased the potential difference of intermetallic compounds with the Al matrix, promoting a faster corrosion process.  相似文献   

12.
13.
14.
The hot-corrosion resistance of Ni–Cr–Al–Y and Ni–17.8 wt.% Si was examined in sulfate and sulfate plus vanadate melts at 973 K. Two salt-deposit compositions were considered: (a) sodium sulfate+50 mole% magnesium-sulfate eutectic and (b) sodium sulfate plus 20 mole% sodium meta-vanadate. Both types of deposit were molten at the test temperature. Cyclic hot-corrosion tests were conducted in a gas mixture consisting of oxygen, sulfur dioxide, and 0.0240 vol.% sulfur trioxide. The hot-corrosion kinetics were evaluated using weight change and the corrosion mechanism deduced from post-test metallography. The results indicate that the nickel–silicon alloy had much better hot corrosion resistance than Ni–Cr–Al–Y under all test conditions considered. The sample preparation process is outlined, the test procedure summarized, and the experimental results are presented and discussed.  相似文献   

15.
    
The exfoliation corrosion behavior of an Al–Zn–Mg–Cu–Zr alloy containing Sc artificially aged at 120 °C for 24 h is studied by macroscopic observation techniques and electrochemical impedance spectroscopy (EIS) measurements. After 48 h immersion, the blisters start bursting and delamination initiates, along with the appearance of two time constants in the impedance diagrams. According to the simulation by equivalent circuit, the corrosion rate decreases sharply and then reaches a steady state, which is due to the change of the solution pH and oxide layer thickness, as well as the accumulation of corrosion products.  相似文献   

16.
Al and Zn elemental powder mixtures were subjected to high-energy milling to produce Al–14 wt% Zn alloy. The milled powders were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and microhardness measurement. The Al and Zn grain sizes were estimated from broadening of XRD peaks using Williamson–Hall formula. The results showed that in early stage of milling the solubility of Zn in Al is extended compared to the equilibrium value which is accompanied by a decrease in lattice parameter of the Al matrix. However, after longer milling times, decomposition of Al(Zn) supersaturated solid solution appeared to occur leading to an increase in Al lattice parameter and also a decrease in hardness value of as-milled powder. The final product of milling includes both Al and Zn phases having a grain size of 40 nm and 20 nm, respectively.  相似文献   

17.
The formation and development of oxides in Ni–4Al and Ni–4Al–xSi (at.%, x=1, 3, 5) alloys at 5–9×10–6 and 1 atm oxygen pressure at 1073 K have been studied. The oxidation rate increased with an increase of silicon content in the alloy at the early stage of oxidation, but decreased after longer time exposure due to formation of an intermediate layer composed of NiO and spinel (NiAl2O4 and Ni2SiO4) between the top NiO layer and the internal-oxidation zone. This intermediate layer became a barrier for releasing stress, generated by the volume expansion associated with oxidation of solute atoms, resulting in high dislocation density and severe distortion in the internal-oxidation zone for the Ni–Al–Si alloys. In Ni–4Al alloy where no complete intermediate-layer formation occurred, stress was easily released by an enhanced vacancy gradient, and therefore an enhanced vacancy-injection rate into the alloy, resulting in a higher oxidation rate than the situation where a sample was oxidized at an oxygen pressure associated with the dissociation of NiO.  相似文献   

18.
The oxidation behavior of FeCoNi, FeCoNiCr, and FeCoNiCrCu equi-molar alloys was studied over the temperature range 800–1000 °C in dry air. The ternary and quaternary alloys were single-phase, while the quinary alloy was two-phase. In general, the oxidation kinetics of the ternary and quinary alloys followed the two-stage parabolic rate law, with rate constants generally increasing with temperature. Conversely, three-stage parabolic kinetics were observed for the quaternary alloy at T 900°C. The additions of Cr and Cu enhanced the oxidation resistance to a certain extent. The scales formed on all the alloys were triplex and strongly dependent on the alloy composition. In particular, on the ternary alloy, they consist of an outer-layer of CoO, an intermediate layer of Fe3O4, and an inner-layer of CoNiO2 and Fe3O4. Internal oxidation with formation of FeO precipitates was also observed for this alloy, which had a thickness increasing with temperature. The scales formed on the quaternary alloy consisted of an outer layer of Fe3O4 and CoCr2O4, an intermediate layer of FeCr2O4 and NiCr2O4, and an inner layer of Cr2O3. Finally, the scales formed on the quinary alloy are all heterophasic, consisting of an outer layer of CuO, an intermediate-layer of CuO and Fe3O4, and an inner-layer of Fe3O4, FeCr2O4, and CuCrO2. The formation of Cr2O3 on the quaternary alloy and possibly that of CuCrO2 on the quinary alloy was responsible for the reduction of the oxidation rates as compared to the ternary alloy.  相似文献   

19.
    
The intercrystalline corrosion, exfoliation corrosion (EXCO), and stress corrosion cracking (SCC) of Al–Zn–Mg–Sc–Zr alloy were investigated by means of constant temperature immersion corrosion method, optical microscopy, transmission electron microscopy (TEM), and electrochemical impedance spectroscopy (EIS). The results show that intercrystalline corrosion, and EXCO susceptibility of Al–Zn–Mg–Sc–Zr alloy decrease gradually with increasing of aging time. Corrosion susceptibility order from low to high is as follows: OA > PA > UA > NA. The SCC susceptibility index of PA temper is more than OA temper at the same strain rate. According to TEM observation, with aging time prolonging, a part of η′ phases transform to η equilibrium phases, which become coarse gradually. The distribution discontinuity of the grain boundary precipitates increases. In addition, for Al–Zn–Mg–Sc–Zr alloy without EXCO, the EIS is comprised by a capacitive impedance arc at high frequency and an inductive impedance arc at low frequency. Once EXCO occurs, the EIS is composed of two capacitive impedance arcs at high frequency and at low frequency, respectively.  相似文献   

20.
    
In this study, the electrochemical behavior of Mg–9Al–0.5Zn, Mg–9Al–0.7Zn, and Mg–9Al–1.0Zn electrodes in a 0.7 mol L?1 NaCl solution is evaluated by using potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM), and potentiostatic oxidation. The utilization efficiencies of these materials are also determined. The results show that the Mg–9Al–1.0Zn alloy has the highest corrosion resistance and that Mg–9Al–0.5Zn displays the largest discharge current in the 0.7 mol L ?1 NaCl solution at 25°C. In addition, the utilization efficiencies of the alloys decrease as follows: Mg–9Al–1.0Zn > Mg–9Al–0.7Zn > Mg–9Al–0.5Zn. This study illustrates that doping Zn into Mg‐Al electrodes increases the corrosion resistance and utilization efficiency but decreases the discharge activity of Mg–Al–Zn anodes when the Zn content is between 0.5% and 1.0%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号