首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Metal‐organic frameworks (MOFs) represent a new class of hybrid organic‐inorganic supramolecular materials comprised of ordered networks formed from organic electron donor linkers and metal cations. They can exhibit extremely high surface areas, as well as tunable pore size and functionality, and can act as hosts for a variety of guest molecules. Since their discovery, MOFs have enjoyed extensive exploration, with applications ranging from gas storage to drug delivery to sensing. This review covers advances in the MOF field from the past three years, focusing on applications, including gas separation, catalysis, drug delivery, optical and electronic applications, and sensing. We also summarize recent work on methods for MOF synthesis and computational modeling.  相似文献   

2.
Metal–organic frameworks (MOFs)—an emerging class of hybrid porous materials built from metal ions or clusters bridged by organic linkers—have attracted increasing attention in recent years. The superior properties of MOFs, such as well‐defined pore aperture, tailorable composition and structure, tunable size, versatile functionality, high agent loading, and improved biocompatibility, make them promising candidates as drug delivery hosts. Furthermore, scientists have made remarkable achievements in the field of nanomedical applications of MOFs, owing to their facile synthesis on the nanoscale and alternative functionalization via inclusion and surface chemistry. A brief introduction to the applications of MOFs in controlled drug/cargo delivery and cancer therapy that have been reported in recent years is provided here.  相似文献   

3.
Photoreduction of CO2 into reusable carbon forms is considered as a promising approach to address the crisis of energy from fossil fuels and reduce excessive CO2 emission. Recently, metal–organic frameworks (MOFs) have attracted much attention as CO2 photoreduction‐related catalysts, owing to their unique electronic band structures, excellent CO2 adsorption capacities, and tailorable light‐absorption abilities. Recent advances on the design, synthesis, and CO2 reduction applications of MOF‐based photocatalysts are discussed here, beginning with the introduction of the characteristics of high‐efficiency photocatalysts and structural advantages of MOFs. The roles of MOFs in CO2 photoreduction systems as photocatalysts, photocatalytic hosts, and cocatalysts are analyzed. Detailed discussions focus on two constituents of pure MOFs (metal clusters such as Ti–O, Zr–O, and Fe–O clusters and functional organic linkers such as amino‐modified, photosensitizer‐functionalized, and electron‐rich conjugated linkers) and three types of MOF‐based composites (metal–MOF, semiconductor–MOF, and photosensitizer–MOF composites). The constituents, CO2 adsorption capacities, absorption edges, and photocatalytic activities of these photocatalysts are highlighted to provide fundamental guidance to rational design of efficient MOF‐based photocatalyst materials for CO2 reduction. A perspective of future research directions, critical challenges to be met, and potential solutions in this research field concludes the discussion.  相似文献   

4.
Carbon micro‐/nanocages have attracted great attention owing to their wide potential applications. Herein, a self‐templated strategy is presented for the synthesis of a hydrangea‐like superstructure of open carbon cages through morphology‐controlled thermal transformation of core@shell metal–organic frameworks (MOFs). Direct pyrolysis of core@shell zinc (Zn)@cobalt (Co)‐MOFs produces well‐defined open‐wall nitrogen‐doped carbon cages. By introducing guest iron (Fe) ions into the core@shell MOF precursor, the open carbon cages are self‐assembled into a hydrangea‐like 3D superstructure interconnected by carbon nanotubes, which are grown in situ on the Fe–Co alloy nanoparticles formed during the pyrolysis of Fe‐introduced Zn@Co‐MOFs. Taking advantage of such hierarchically porous superstructures with excellent accessibility, synergetic effects between the Fe and the Co, and the presence of catalytically active sites of both metal nanoparticles and metal–Nx species, this superstructure of open carbon cages exhibits efficient bifunctional catalysis for both oxygen evolution reaction and oxygen reduction reaction, achieving a great performance in Zn–air batteries.  相似文献   

5.
Metal–organic frameworks (MOFs) have become a research hotspot since they have been explored as convenient precursors for preparing various multifunctional nanomaterials. However, the preparation of MOF networks with controllable flake morphology in large scale is not realized yet. Herein, a self‐template strategy is developed to prepare MOF networks. In this work, layered double‐metal hydroxide (LDH) and other layered metal hydroxides are used not only as a scaffold but also as a self‐sacrificed metal source. After capturing the abundant metal cations identically from the LDH by the organic linkers, MOF networks are in situ formed. It is interesting that the MOF network‐derived carbon materials retain the flake morphology and exhibit a unique honeycomb‐like macroporous structure due to the confined shrinkage of the polyhedral facets. The overall properties of the carbon networks are adjustable according to the tailored metal compositions in LDH and the derived MOFs, which are desirable for target‐oriented applications as exemplified by the electrochemical application in supercapacitors.  相似文献   

6.
Metal–organic frameworks (MOFs), which are a unique class of hybrid porous materials built from metal ions and organic linkers, have attracted significant research interest in recent years. Compared with conventional porous materials, MOFs exhibit a variety of advantages, including a large surface area, a tunable pore size and shape, an adjustable composition and structure, biodegradability, and versatile functionalities, which enable MOFs to perform as promising platforms for drug delivery, molecular imaging, and theranostic applications. In this article, the recent research progress related to nanoscale metal–organic frameworks (NMOFs) is summarized with a focus on synthesis strategies and drug delivery, molecular imaging, and theranostic applications. The future challenges and opportunities of NMOFs are also discussed in the context of translational medical research. More effort is warranted to develop clinically translatable NMOFs for various applications in nanomedicine.  相似文献   

7.
Currently, metal‐organic frameworks (MOFs) are intensively studied as active materials for electrochemical energy storage applications due to their tunable structure and exceptional porosities. Among them, water stable pillared MOFs with dual ligands have been reported to exhibit high supercapacitor (SC) performance. Herein, the “One‐for‐All” strategy is applied to synthesize both positive and negative electrodes of a hybrid SC (HSC) from a single pillared MOF. Specifically, Ni‐DMOF‐TM ([Ni(TMBDC)(DABCO)0.5], TMBDC: 2,3,5,6‐tetramethyl‐1,4‐benzenedicarboxylic acid, DABCO: 1,4‐diazabicyclo[2.2.2]‐octane) nanorods are directly grown on carbon fiber paper (CFP) (denoted as CFP@TM‐nanorods) with the help of triethylamine and function as the positive electrode of HSC under alkaline electrolyte. Meanwhile, calcinated N‐doped hierarchical porous carbon nanorods (CFP@TM‐NPCs) are produced and utilized as the negative counter‐electrode from a one‐step heat treatment of CFP@TM‐nanorods. After assembling these two electrodes together to make a hybrid device, the TM‐nanorods//TM‐NPCs exhibit a wide voltage window of 1.5 V with a high sloping discharge plateau between 1‐1.2 V, indicating its great potential for practical applications. This as‐described “One‐for‐All” strategy is widely applicable and highly reproducible in producing MOF‐based electrode materials for HSC applications, which shortens the gap between experimental synthesis and practical application of MOFs in fast energy storage.  相似文献   

8.
Their highly functional nature has endowed metal–organic frameworks (MOFs) with diverse applications. On this basis, a higher demand has been proposed for the preparation of novel‐structured MOFs. Hollow MOFs have been intensively studied and exhibited versatile properties, and among the various methods, secondary‐component incorporation has been proved promising in the design and preparation of complex structures with requisite properties. Herein, the synthesis and applications of secondary component incorporated MOFs and their derivatives are systematically reviewed. Two main methodologies, preincorporation and postmodification, are discussed in detail, and the role of the secondary component is demonstrated. Based on these introductions, the applications of those materials, including chemical catalysis, electrocatalysis, and energy storage applications, are summarized. Finally, a personal outlook for the future opportunities and challenges in this field is given.  相似文献   

9.
Over the past two decades, metal–organic frameworks (MOFs), a type of porous material, have aroused great interest as precursors or templates for the derivation of metal oxides and composites for the next generation of electrochemical energy storage applications owing to their high specific surface areas, controllable structures, and adjustable pore sizes. The electrode materials, which affect the performance in practical applications, are pivotal components of batteries and supercapacitors. Metal oxide composites derived from metal–organic frameworks possessing high reversible capacity and superior rate and cycle performance are excellent electrode materials. In this Review, potential applications for MOF‐derived metal oxide composites for lithium‐ion batteries, sodium‐ion batteries, lithium–oxygen batteries, and supercapacitors are studied and summarized. Finally, the challenges and opportunities for future research on MOF‐derived metal oxide composites are proposed on the basis of academic knowledge from the reported literature as well as from experimental experience.  相似文献   

10.
The development of earth‐abundant, active, and stable catalysts is important for solar energy conversion. Metal‐organic frameworks (MOFs) have been viewed as a promising class of porous materials, which may have innovative application in photocatalysis. In this paper, three types of Fe‐based MOFs and their aminofunctionalized derivatives have been fabricated and systematically studied as water oxidation catalysts (WOCs) for oxygen evolution under visible light irradiation. MIL‐101(Fe) possesses a higher current density and earlier onset potential and exhibits excellent visible light‐driven oxygen evolution activity than the other Fe‐based catalysts. It speeds up the oxygen evolution reaction rate with the higher initial turnover frequencies value of 0.10 s?1. Our study demonstrates that Fe‐based MOFs as efficient WOCs are promising candidates for photocatalytic water oxidation process.  相似文献   

11.
Hydrogen energy is commonly considered as a clean and sustainable alternative to the traditional fossil fuels. Toward universal utilization of hydrogen energy, developing high‐efficiency, low‐cost, and sustainable energy conversion technologies, especially water‐splitting electrolyzers and fuel cells, is of paramount significance. In order to enhance the energy conversion efficiency of the water‐splitting electrolyzers and fuel cells, earth‐abundant and stable electrocatalysts are essential for accelerating the sluggish kinetics of hydrogen and oxygen reactions. In the past decade, carbon‐rich nanomaterials have emerged as a promising class of hydrogen and oxygen electrocatalysts. Here, the development and electrocatalytic activity of various carbon‐rich materials, including metal‐free carbon, conjugated porous polymers, graphdiyne, covalent organic frameworks (COFs), atomic‐metal‐doped carbon, as well as metal–organic frameworks (MOFs), are demonstrated. In particular, the correlations between their porous nanostructures/electronic structures of active centers and electrocatalytic performances are emphatically discussed. Therefore, this review article guides the rational design and synthesis of high‐performance, metal‐free, and noble‐metal‐free carbon‐rich electrocatalysts and eventually advances the rapid development of water‐splitting electrolyzers and fuel cells toward practical applications.  相似文献   

12.
Porous nanostructured materials are demonstrated to be very promising in catalysis due to their well accessible active sites. Thermally stable metal‐organic frameworks (MOFs) as hard templates are successfully utilized to afford porous metal oxides and subsequently metal sulfides by a nanocasting method. The resultant metal oxides/sulfides show considerable Brunauer–Emmett–Teller (BET) surface areas, by partially inheriting the pore character of MOF templates. Preliminary investigation on the obtained hierarchically porous CdS for water splitting, as a proof of concept, demonstrates its much higher activity than both corresponding bulk and nanosized counterparts, under visible light irradiation. Given the structural diversity and tailorability of MOFs, such synthetic approach may open an avenue to the synthesis of advanced porous materials for functional applications.  相似文献   

13.
Metal-organic frameworks (MOFs) represent a new class of hybrid organic-inorganic supramolecular materials comprised of ordered networks formed from organic electron donor linkers and metal cations. They can exhibit extremely high surface areas, as well as tunable pore size and functionality, and can act as hosts for a variety of guest molecules. Since their discovery, MOFs have enjoyed extensive exploration, with applications ranging from gas storage to drug delivery to sensing. This review covers advances in the MOF field from the past three years, focusing on applications, including gas separation, catalysis, drug delivery, optical and electronic applications, and sensing. We also summarize recent work on methods for MOF synthesis and computational modeling.  相似文献   

14.
Metal?organic frameworks (MOFs), also known as coordination polymers, represent an interesting type of solid crystalline materials that can be straightforwardly self‐assembled through the coordination of metal ions/clusters with organic linkers. Owing to the modular nature and mild conditions of MOF synthesis, the porosities of MOF materials can be systematically tuned by judicious selection of molecular building blocks, and a variety of functional sites/groups can be introduced into metal ions/clusters, organic linkers, or pore spaces through pre‐designing or post‐synthetic approaches. These unique advantages enable MOFs to be used as a highly versatile and tunable platform for exploring multifunctional MOF materials. Here, the bright potential of MOF materials as emerging multifunctional materials is highlighted in some of the most important applications for gas storage and separation, optical, electric and magnetic materials, chemical sensing, catalysis, and biomedicine.  相似文献   

15.
Owing to the potential applications in technological areas such as gas storage, catalysis, separation, sensing and nonlinear optics, tremendous efforts have been devoted to the development of porous metal‐organic frameworks (MOFs) over the past ten years. Homochiral porous MOFs are particularly attractive candidates as heterogeneous asymmetric catalysts and enantioselective adsorbents and separators for production of optically active organic compounds due to the lack of homochiral inorganic porous materials such as zeolites. In this review, we summarize the recent research progress in homochiral MOF materials, including their synthetic strategy, distinctive structural features and latest advances in asymmetric heterogeneous catalysis and enantioselective separation.  相似文献   

16.
Metal–organic frameworks (MOFs) have attracted considerable attention for various applications due to their tunable structure, porosity and functionality. In general, MOFs have been synthesized from isolated metal ions and organic linkers under hydrothermal or solvothermal conditions via one-spot reactions. The emerging precursor approach and kinetically tuned dimensional augmentation strategy add more diversity to this field. In addition, to speed up the crystallization process and create uniform crystals with reduced size, many alternative synthesis routes have been explored. Recent advances in microwave-assisted synthesis and electrochemical synthesis are presented in this review. In recent years, post-synthetic approaches have been shown to be powerful tools to synthesize MOFs with modified functionality, which cannot be attained via de novo synthesis. In this review, some current accomplishments of post-synthetic modification (PSM) based on covalent transformations and coordinative interactions as well as post-synthetic exchange (PSE) in robust MOFs are provided.  相似文献   

17.
While metal‐organic frameworks (MOFs) show great potential for gas adsorption and storage, their powder form limits deployment opportunities. Integration of MOFs on polymeric fibrous scaffolds will enable new applications in gas adsorption, membrane separation, catalysis, and toxic gas sensing. Here, we demonstrate a new synthesis route for growing MOFs on fibrous materials that achieves high MOF loadings, large surface areas and high adsorptive capacities. We find that a nanoscale coating of Al2O3 formed by atomic layer deposition (ALD) on the surface of nonwoven fiber mats facilitates nucleation of MOFs on the fibers throughout the mat. Functionality of MOFs is fully maintained after integration, and MOF crystals are well attached to the fibers. Breakthrough tests for HKUST‐1 MOFs [Cu3(BTC)2] on ALD‐coated polypropylene fibers reveal NH3 dynamic loadings up to 5.93 ± 0.20 mol/kg(MOF+fiber). Most importantly, this synthetic approach is generally applicable to a wide range of polymer fibers (e.g., PP, PET, cotton) and MOFs (e.g., HKUST‐1, MOF‐74, and UiO‐66).  相似文献   

18.
Metal–organic frameworks (MOFs) have diverse potential applications in catalysis, gas storage, separation, and drug delivery because of their nanoscale periodicity, permanent porosity, channel functionalization, and structural diversity. Despite these promising properties, the inherent structural features of even some of the best‐performing MOFs make them moisture‐sensitive and unstable in aqueous media, limiting their practical usefulness. This problem could be overcome by developing stable hydrophobic MOFs whose chemical composition is tuned to ensure that their metal–ligand bonds persist even in the presence of moisture and water. However, the design and fabrication of such hydrophobic MOFs pose a significant challenge. Reported syntheses of hydrophobic MOFs are critically summarized, highlighting issues relating to their design, characterization, and practical use. First, wetting of hydrophobic materials is introduced and the four main strategies for synthesizing hydrophobic MOFs are discussed. Afterward, critical challenges in quantifying the wettability of these hydrophobic porous surfaces and solutions to these challenges are discussed. Finally, the reported uses of hydrophobic MOFs in practical applications such as hydrocarbon storage/separation and their use in separating oil spills from water are summarized. Finally, the state of the art is summarized and promising future developments of hydrophobic MOFs are highlighted.  相似文献   

19.
Zeolitic imidazolate frameworks (ZIFs), a subclass of metal–organic frameworks (MOFs) built with tetrahedral metal ions and imidazolates, offer permanent porosity and high thermal and chemical stabilities. While ZIFs possess some attractive physical and chemical properties, it remains important to enhance their functionality for practical application. Here, an overview of the extensive strategies which have been developed to improve the functionality of ZIFs is provided, including linker modifications, functional hybridization of ZIFs via the encapsulation of guest species (such as metal and metal oxide nanoparticles and biomolecules) into ZIFs, and hybridization with polymeric matrices to form mixed matrix membranes for industrial gas and liquid separations. Furthermore, the developed strategies for achieving size and shape control of ZIF nanocrystals are considered, which are important for optimizing the textural characteristics as well as the functional performance of ZIFs and their derived materials/hybrids. Moreover, the recent trends of using ZIFs as templates for the derivation of nanoporous hybrid materials, including carbon/metal, carbon/oxide, carbon/sulfide, and carbon/phosphide hybrids, are discussed. Finally, some perspectives on the potential future research directions and applications for ZIFs and ZIF‐derived materials are offered.  相似文献   

20.
In the past decade, a huge development in rational design, synthesis, and application of molecular sieve membranes, which typically included zeolites, metal–organic frameworks (MOFs), and graphene oxides, has been witnessed. Owing to high flexibility in both pore apertures and functionality, MOFs in the form of membranes have offered unprecedented opportunities for energy‐efficient gas separations. Reports on the fabrication of well‐intergrown MOF membranes first appeared in 2009. Since then there has been tremendous growth in this area along with an exponential increase of MOF‐membrane‐related publications. In order to compete with other separation and purification technologies, like cryogenic distillation, pressure swing adsorption, and chemical absorption, separation performance (including permeability, selectivity, and long‐term stability) of molecular sieve membranes must be further improved in an attempt to reach an economically attractive region. Therefore, microstructural engineering and architectural design of MOF membranes at mesoscopic and microscopic levels become indispensable. This review summarizes some intriguing research that may potentially contribute to large‐scale applications of MOF membranes in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号