共查询到20条相似文献,搜索用时 19 毫秒
1.
When 2D Materials Meet Molecules: Opportunities and Challenges of Hybrid Organic/Inorganic van der Waals Heterostructures 下载免费PDF全文
van der Waals heterostructures, composed of vertically stacked inorganic 2D materials, represent an ideal platform to demonstrate novel device architectures and to fabricate on‐demand materials. The incorporation of organic molecules within these systems holds an immense potential, since, while nature offers a finite number of 2D materials, an almost unlimited variety of molecules can be designed and synthesized with predictable functionalities. The possibilities offered by systems in which continuous molecular layers are interfaced with inorganic 2D materials to form hybrid organic/inorganic van der Waals heterostructures are emphasized. Similar to their inorganic counterpart, the hybrid structures have been exploited to put forward novel device architectures, such as antiambipolar transistors and barristors. Moreover, specific molecular groups can be employed to modify intrinsic properties and confer new capabilities to 2D materials. In particular, it is highlighted how molecular self‐assembly at the surface of 2D materials can be mastered to achieve precise control over position and density of (molecular) functional groups, paving the way for a new class of hybrid functional materials whose final properties can be selected by careful molecular design. 相似文献
2.
P‐GaSe/N‐MoS2 Vertical Heterostructures Synthesized by van der Waals Epitaxy for Photoresponse Modulation 下载免费PDF全文
Nan Zhou Renyan Wang Xing Zhou Hongyue Song Xing Xiong Yao Ding Jingtao Lü Lin Gan Tianyou Zhai 《Small (Weinheim an der Bergstrasse, Germany)》2018,14(7)
The important role of p–n junction in modulation of the optoelectronic properties of semiconductors is widely cognized. In this work, for the first time the synthesis of p‐GaSe/n‐MoS2 heterostructures via van der Waals expitaxial growth is reported, although a considerable lattice mismatching of ≈18% exists. According to the simulation, a significant type II p–n junction barrier located at the interface is expected to be formed, which can modulate optoelectronic properties of MoS2 effectively. It is intriguing to reveal that the presence of GaSe can result in obvious Raman and photoluminescence (PL) shift of MoS2 compared to that of pristine one, more interestingly, for PL peak shift, the effect of GaSe‐induced tensile strain on MoS2 has overcome the p‐doping effect of GaSe, evidencing the strong interlayer coupling between GaSe and MoS2. As a result, the photoresponse rate of heterostructures is improved by almost three orders of magnitude compared with that of pristine MoS2. 相似文献
3.
In‐Plane Heterostructures Enable Internal Stress Assisted Strain Engineering in 2D Materials 下载免费PDF全文
Conventional methods to induce strain in 2D materials can hardly catch up with the sharp increase in requirements to design specific strain forms, such as the pseudomagnetic field proposed in graphene, funnel effect of excitons in MoS2, and also the inverse funnel effect reported in black phosphorus. Therefore, a long‐standing challenge in 2D materials strain engineering is to find a feasible scheme that can be used to design given strain forms. In this article, combining the ability of experimentally synthetizing in‐plane heterostructures and elegant Eshelby inclusion theory, the possibility of designing strain fields in 2D materials to manipulate physical properties, which is called internal stress assisted strain engineering, is theoretically demonstrated. Particularly, through changing the inclusion's size, the stress or strain gradient can be controlled precisely, which is never achieved. By taking advantage of it, the pseudomagnetic field as well as the funnel effect can be accurately designed, which opens an avenue to practical applications for strain engineering in 2D materials. 相似文献
4.
Cheng Tang Ling Zhong Bingsen Zhang Hao‐Fan Wang Qiang Zhang 《Advanced materials (Deerfield Beach, Fla.)》2018,30(5)
The emergence of van der Waals (vdW) heterostructures of 2D materials has opened new avenues for fundamental scientific research and technological applications. However, the current concepts and strategies of material engineering lack feasibilities to comprehensively regulate the as‐obtained extrinsic physicochemical characters together with intrinsic properties and activities for optimal performances. A 3D mesoporous vdW heterostructure of graphene and nitrogen‐doped MoS2 via a two‐step sequential chemical vapor deposition method is constructed. Such strategy is demonstrated to offer an all‐round engineering of 2D materials including the morphology, edge, defect, interface, and electronic structure, thereby leading to robustly modified properties and greatly enhanced electrochemical activities. The hydrogen evolution is substantially accelerated on MoS2, while the oxygen reduction and evolution are significantly improved on graphene. This work provides a powerful overall engineering strategy of 2D materials for electrocatalysis, which is also enlightening for other nanomaterials and energy‐related applications. 相似文献
5.
Juan Lyu Jing Pei Yuzheng Guo Jian Gong Huanglong Li 《Advanced materials (Deerfield Beach, Fla.)》2020,32(2):1906000
The use of a foreign metallic cold source (CS) has recently been proposed as a promising approach toward the steep-slope field-effect-transistor (FET). In addition to the selection of source material with desired density of states–energy relation (D(E)), engineering the source:channel interface for gate-tunable channel-barrier is crucial to CS-FETs. However, conventional metal:semiconductor (MS) interfaces generally suffer from strong Fermi-level pinning due to the inevitable chemical disorder and defect-induced gap states, precluding the gate tunability of the barriers. By comprehensive materials and device modeling at the atomic scale, it is reported that 2D van der Waals (vdW) MS interfaces, with their atomic sharpness and cleanness, can be considered as general ingredients for CS-FETs. As test cases, InSe-based n-type FETs are studied. It is found that graphene can be spontaneously p-type doped along with slightly opened bandgap around the Dirac-point by interfacing with InSe, resulting in superexponentially decaying hot carrier density with increasing n-type channel-barrier. Moreover, the D(E) relations suggest that 2D transition-metal dichalcogenides and 2D transition-metal carbides are a rich library of CS materials. Graphene, Cd3C2, T-VTe2, H-VTe2, and H-TaTe2 CSs lead to subthreshold swing below 60 mV dec−1. This work broadens the application potentials of 2D vdW MS heterostructures and serves as a springboard for more studies on low-power electronics based on 2D materials. 相似文献
6.
Jian Guo Laiyuan Wang Yiwei Yu Peiqi Wang Yu Huang Xiangfeng Duan 《Advanced materials (Deerfield Beach, Fla.)》2019,31(49)
The minimization of the subthreshold swing (SS) in transistors is essential for low‐voltage operation and lower power consumption, both critical for mobile devices and internet of things (IoT) devices. The conventional metal‐oxide‐semiconductor field‐effect transistor requires sophisticated dielectric engineering to achieve nearly ideal SS (60 mV dec?1 at room temperature). However, another type of transistor, the junction field‐effect transistor (JFET) is free of dielectric layer and can reach the theoretical SS limit without complicated dielectric engineering. The construction of a 2D SnSe/MoS2 van der Waals (vdW) heterostructure‐based JFET with nearly ideal SS is reported. It is shown that the SnSe/MoS2 vdW heterostructure exhibits excellent p–n diode rectifying characteristics with low saturate current. Using the SnSe as the gate and MoS2 as the channel, the SnSe/MoS2 vdW heterostructure exhibit well‐behavioured n‐channel JFET characteristics with a small pinch‐off voltage VP of ?0.25 V, nearly ideal subthreshold swing SS of 60.3 mV dec?1 and high ON/OFF ratio over 106, demonstrating excellent electronic performance especially in the subthreshold regime. 相似文献
7.
Jingyu Li Lan Liu Xiaozhang Chen Chunsen Liu Jianlu Wang Weida Hu David Wei Zhang Peng Zhou 《Advanced materials (Deerfield Beach, Fla.)》2019,31(11)
Due to the large gap in timescale between volatile memory and nonvolatile memory technologies, quasi‐nonvolatile memory based on 2D materials has become a viable technology for filling the gap. By exploiting the elaborate energy band structure of 2D materials, a quasi‐nonvolatile memory with symmetric ultrafast write‐1 and erase‐0 speeds and long refresh time is reported. Featuring the 2D semifloating gate architecture, an extrinsic p–n junction is used to charge or discharge the floating gate. Owing to the direct injection or recombination of charges from the floating gate electrode, the erasing speed is greatly enhanced to nanosecond timescale. Combined with the ultrafast write‐1 speed, symmetric ultrafast operations on the nanosecond timescale are achieved, which are ≈106 times faster than other memories based on 2D materials. In addition, the refresh time after a write‐1 operation is 219 times longer than that of dynamic random access memory. This performance suggests that quasi‐nonvolatile memory has great potential to decrease power consumption originating from frequent refresh operations, and usher in the next generation of high‐speed and low‐power memory technology. 相似文献
8.
Zheng Zhang Pei Lin Qingliang Liao Zhuo Kang Haonan Si Yue Zhang 《Advanced materials (Deerfield Beach, Fla.)》2019,31(37)
Although the library of 2D atomic crystals has greatly expanded over the past years, research into graphene is still one of the focuses for both academia and business communities. Due to its unique electronic structure, graphene offers a powerful platform for exploration of novel 2D physics, and has significantly impacted a wide range of fields including energy, electronics, and photonics. Moreover, the versatility of combining graphene with other functional components provides a powerful strategy to design artificial van der Waals (vdWs) heterostructures. Aside from the stacked 2D–2D vdWs heterostructure, in a broad sense graphene can hybridize with other non‐2D materials through vdWs interactions. Such mixed‐dimensional vdWs (MDWs) structures allow considerable freedom in material selection and help to harness the synergistic advantage of different dimensionalities, which may compensate for graphene's intrinsic shortcomings. A succinct overview of representative advances in graphene‐based MDWs heterostructures is presented, ranging from assembly strategies to applications in optoelectronics. The scientific merit and application advantages of these hybrid structures are particularly emphasized. Moreover, considering possible breakthroughs in new physics and application potential on an industrial scale, the challenges and future prospects in this active research field are highlighted. 相似文献
9.
10.
All‐Carbon Vertical van der Waals Heterostructures: Non‐destructive Functionalization of Graphene for Electronic Applications 下载免费PDF全文
Mirosław Woszczyna Andreas Winter Miriam Grothe Annika Willunat Stefan Wundrack Rainer Stosch Thomas Weimann Franz Ahlers Andrey Turchanin 《Advanced materials (Deerfield Beach, Fla.)》2014,26(28):4831-4837
11.
Luman Zhang Xinyu Huang Hongwei Dai Mingshan Wang Hui Cheng Lei Tong Zheng Li Xiaotao Han Xia Wang Lei Ye Junbo Han 《Advanced materials (Deerfield Beach, Fla.)》2020,32(38):2002032
Magnetism in 2D has long been the focus of condensed matter physics due to its important applications in spintronic devices. A particularly promising aspect of 2D magnetism is the ability to fabricate 2D heterostructures with engineered optical, electrical, and quantum properties. Recently, the discovery of intrinsic ferromagnetisms in atomic thick materials has provided a new platform for investigations of fundamental magnetic physics. In contrast to 2D CrI3 and Cr2Ge2Te6 insulators, itinerant ferromagnetic Fe3GeTe2 (FGT), which has a larger intrinsic perpendicular anisotropy, higher Curie temperature (TC), and relatively better stability, is a promising candidate for achieving permanent room-temperature ferromagnetism through interface or component engineering. Here, it is shown that the ferromagnetic properties of FGT thin flakes can be modulated through coupling with a FePS3. The magneto-optical Kerr effect results show that the TC of FGT is improved by more than 30 K and that the coercive field is increased by ≈100% due to the proximity coupling effect, which changes the spin textures of FGT at the interface. This work reveals that antiferromagnet/ferromagnet coupling is a promising way to engineer the magnetic properties of itinerant 2D ferromagnets, which paves the way for applications in advanced magnetic spintronic and memory devices. 相似文献
12.
MoS2/Rubrene van der Waals Heterostructure: Toward Ambipolar Field‐Effect Transistors and Inverter Circuits 下载免费PDF全文
Xuexia He WaiLeong Chow Fucai Liu BengKang Tay Zheng Liu 《Small (Weinheim an der Bergstrasse, Germany)》2017,13(2)
2D transition metal dichalcogenides are promising channel materials for the next‐generation electronic device. Here, vertically 2D heterostructures, so called van der Waals solids, are constructed using inorganic molybdenum sulfide (MoS2) few layers and organic crystal – 5,6,11,12‐tetraphenylnaphthacene (rubrene). In this work, ambipolar field‐effect transistors are successfully achieved based on MoS2 and rubrene crystals with the well balanced electron and hole mobilities of 1.27 and 0.36 cm2 V?1 s?1, respectively. The ambipolar behavior is explained based on the band alignment of MoS2 and rubrene. Furthermore, being a building block, the MoS2/rubrene ambipolar transistors are used to fabricate CMOS (complementary metal oxide semiconductor) inverters that show good performance with a gain of 2.3 at a switching threshold voltage of ?26 V. This work paves a way to the novel organic/inorganic ultrathin heterostructure based flexible electronics and optoelectronic devices. 相似文献
13.
Shi-Jun Liang Bin Cheng Xinyi Cui Feng Miao 《Advanced materials (Deerfield Beach, Fla.)》2020,32(27):1903800
The discovery of two-dimensional (2D) materials with unique electronic, superior optoelectronic, or intrinsic magnetic order has triggered worldwide interest in the fields of material science, condensed matter physics, and device physics. Vertically stacking 2D materials with distinct electronic and optical as well as magnetic properties enables the creation of a large variety of van der Waals heterostructures. The diverse properties of the vertical heterostructures open unprecedented opportunities for various kinds of device applications, e.g., vertical field-effect transistors, ultrasensitive infrared photodetectors, spin-filtering devices, and so on, which are inaccessible in conventional material heterostructures. Here, the current status of vertical heterostructure device applications in vertical transistors, infrared photodetectors, and spintronic memory/transistors is reviewed. The relevant challenges for achieving high-performance devices are presented. An outlook into the future development of vertical heterostructure devices with integrated electronic and optoelectronic as well as spintronic functionalities is also provided. 相似文献
14.
Far‐Field Spectroscopy and Near‐Field Optical Imaging of Coupled Plasmon–Phonon Polaritons in 2D van der Waals Heterostructures 下载免费PDF全文
Xiaoxia Yang Feng Zhai Hai Hu Debo Hu Ruina Liu Shunping Zhang Mengtao Sun Zhipei Sun Jianing Chen Qing Dai 《Advanced materials (Deerfield Beach, Fla.)》2016,28(15):2931-2938
15.
Jihyung Seo Junghyun Lee Gyujeong Jeong Hyesung Park 《Small (Weinheim an der Bergstrasse, Germany)》2019,15(2)
The surface property of growth substrate imposes significant influence in the growth behaviors of 2D materials. Rhenium disulfide (ReS2) is a new family of 2D transition metal dichalcogenides with unique distorted 1T crystal structure and thickness‐independent direct bandgap. The role of growth substrate is more critical for ReS2 owing to its weak interlayer coupling property, which leads to preferred growth along the out‐of‐plane direction while suppressing the uniform in‐plane growth. Herein, graphene is introduced as the growth substrate for ReS2 and the synthesis of graphene/ReS2 vertical heterostructure is demonstrated via chemical vapor deposition. Compared with the rough surface of SiO2/Si substrate with dangling bonds which hinders the uniform growth of ReS2, the inert and smooth surface nature of graphene sheet provides a lower energy barrier for migration of the adatoms, thereby promoting the growth of ReS2 on the graphene surface along the in‐plane direction. Furthermore, patterning of the graphene/ReS2 heterostructure is achieved by the selective growth of ReS2, which is attributed to the strong binding energy between sulfur atoms and graphene surface. The fundamental studies in the role of graphene as the growth template in the formation of van der Waals heterostructures provide better insights into the synthesis of 2D heterostructures. 相似文献
16.
Jia Sun Yongsuk Choi Young Jin Choi Seongchan Kim Jin‐Hong Park Sungjoo Lee Jeong Ho Cho 《Advanced materials (Deerfield Beach, Fla.)》2019,31(34)
The unique properties of hybrid heterostructures have motivated the integration of two or more different types of nanomaterials into a single optoelectronic device structure. Despite the promising features of organic semiconductors, such as their acceptable optoelectronic properties, availability of low‐cost processes for their fabrication, and flexibility, further optimization of both material properties and device performances remains to be achieved. With the emergence of atomically thin 2D materials, they have been integrated with conventional organic semiconductors to form multidimensional heterostructures that overcome the present limitations and provide further opportunities in the field of optoelectronics. Herein, a comprehensive review of emerging 2D–organic heterostructures—from their synthesis and fabrication to their state‐of‐the‐art optoelectronic applications—is presented. Future challenges and opportunities associated with these heterostructures are highlighted. 相似文献
17.
Twinned Growth of Metal‐Free,Triazine‐Based Photocatalyst Films as Mixed‐Dimensional (2D/3D) van der Waals Heterostructures 下载免费PDF全文
Dana Schwarz Yu Noda Jan Klouda Karolina Schwarzová‐Pecková Ján Tarábek Jiří Rybáček Jiří Janoušek Frank Simon Maksym V. Opanasenko Jiří Čejka Amitava Acharjya Johannes Schmidt Sören Selve Valentin Reiter‐Scherer Nikolai Severin Jürgen P. Rabe Petra Ecorchard Junjie He Miroslav Polozij Petr Nachtigall Michael J. Bojdys 《Advanced materials (Deerfield Beach, Fla.)》2017,29(40)
Design and synthesis of ordered, metal‐free layered materials is intrinsically difficult due to the limitations of vapor deposition processes that are used in their making. Mixed‐dimensional (2D/3D) metal‐free van der Waals (vdW) heterostructures based on triazine (C3N3) linkers grow as large area, transparent yellow‐orange membranes on copper surfaces from solution. The membranes have an indirect band gap (E g,opt = 1.91 eV, E g,elec = 1.84 eV) and are moderately porous (124 m2 g?1). The material consists of a crystalline 2D phase that is fully sp2 hybridized and provides structural stability, and an amorphous, porous phase with mixed sp2–sp hybridization. Interestingly, this 2D/3D vdW heterostructure grows in a twinned mechanism from a one‐pot reaction mixture: unprecedented for metal‐free frameworks and a direct consequence of on‐catalyst synthesis. Thanks to the efficient type I heterojunction, electron transfer processes are fundamentally improved and hence, the material is capable of metal‐free, light‐induced hydrogen evolution from water without the need for a noble metal cocatalyst (34 µmol h?1 g?1 without Pt). The results highlight that twinned growth mechanisms are observed in the realm of “wet” chemistry, and that they can be used to fabricate otherwise challenging 2D/3D vdW heterostructures with composite properties. 相似文献
18.
Yu Zhang Lei Yin Junwei Chu Tofik Ahmed Shifa Jing Xia Feng Wang Yao Wen Xueying Zhan Zhenxing Wang Jun He 《Advanced materials (Deerfield Beach, Fla.)》2018,30(40)
2D metal‐semiconductor heterostructures based on transition metal dichalcogenides (TMDs) are considered as intriguing building blocks for various fields, such as contact engineering and high‐frequency devices. Although, a series of p–n junctions utilizing semiconducting TMDs have been constructed hitherto, the realization of such a scheme using 2D metallic analogs has not been reported. Here, the synthesis of uniform monolayer metallic NbS2 on sapphire substrate with domain size reaching to a millimeter scale via a facile chemical vapor deposition (CVD) route is demonstrated. More importantly, the epitaxial growth of NbS2‐WS2 lateral metal‐semiconductor heterostructures via a “two‐step” CVD method is realized. Both the lateral and vertical NbS2‐WS2 heterostructures are achieved here. Transmission electron microscopy studies reveal a clear chemical modulation with distinct interfaces. Raman and photoluminescence maps confirm the precisely controlled spatial modulation of the as‐grown NbS2‐WS2 heterostructures. The existence of the NbS2‐WS2 heterostructures is further manifested by electrical transport measurements. This work broadens the horizon of the in situ synthesis of TMD‐based heterostructures and enlightens the possibility of applications based on 2D metal‐semiconductor heterostructures. 相似文献
19.
Yan Chen Xudong Wang Guangjian Wu Zhen Wang Hehai Fang Tie Lin Shuo Sun Hong Shen Weida Hu Jianlu Wang Jinglan Sun Xiangjian Meng Junhao Chu 《Small (Weinheim an der Bergstrasse, Germany)》2018,14(9)
Van der Waals heterostructures based on 2D layered materials have received wide attention for their multiple applications in optoelectronic devices, such as solar cells, light‐emitting devices, and photodiodes. In this work, high‐performance photovoltaic photodetectors based on MoTe2/MoS2 vertical heterojunctions are demonstrated by exfoliating‐restacking approach. The fundamental electric properties and band structures of the junction are revealed and analyzed. It is shown that this kind of photodetectors can operate under zero bias with high on/off ratio (>105) and ultralow dark current (≈3 pA). Moreover, a fast response time of 60 µs and high photoresponsivity of 46 mA W?1 are also attained at room temperature. The junctions based on 2D materials are expected to constitute the ultimate functional elements of nanoscale electronic and optoelectronic applications. 相似文献
20.
Epitaxial Growth of Molecular Crystals on van der Waals Substrates for High‐Performance Organic Electronics 下载免费PDF全文
Chul‐Ho Lee Theanne Schiros Elton J. G. Santos Kevin G. Yager Seok Ju Kang Sunwoo Lee Jaeeun Yu Kenji Watanabe Takashi Taniguchi James Hone Efthimios Kaxiras Colin Nuckolls Philip Kim 《Advanced materials (Deerfield Beach, Fla.)》2014,26(18):2812-2817