首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we study the block delivery delay of random linear network coding in two‐hop single‐unicast delay‐tolerant networks with grid‐based mobility. By block delivery delay, we mean how long it takes the destination to receive all the K information packets of a single block. Our work includes two parts. First, we give a general analysis of the dependency between packet spaces spanned by different nodes in a stochastic way. Then we simplify the result by means of the approximation. By the dependency analysis, we can accurately update nodes’ innovativeness rank. Second, via tracking the innovativeness ranks of all nodes, we develop an analytic framework to iteratively compute the cumulative distribution function of the block delivery delay. Our simulation results verify that both parts of our analysis are sufficiently accurate. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
In this paper, the cross‐layer optimal design of multihop ad hoc network employing full‐duplex cognitive radios (CRs) is investigated. Firstly, the analytical expressions of cooperative spectrum sensing performance for multihop CR networks over composite fading channels are derived. Then, the opportunistic throughput and transmit power of CRs are presented based on the derivation of false alarm and missed detection probability. Finally, a multiobjective optimization model is proposed to maximize the opportunistic throughputs and minimize the transmitting power. Simulation results indicate that Pareto optimal solution of sensing duration, decision threshold, and transmit power can be achieved by cross‐layer multiobjective optimization, it can balance the conflicts between different objective functions and reap the acceptable outcomes for multihop CR network.  相似文献   

3.
In this paper, we consider secure communications of one source‐destination pair in the presence of one eavesdropper, when full‐duplex decode‐and‐forward cooperative relays operate to enhance physical layer security. While the conventional half‐duplex relay receives the signal from the source and forwards the re‐encoded signal to the destination in two separated time slots, the full‐duplex relay (FDR) performs the transmission and reception at the same time, which can ideally double the secrecy capacity. However, because of the simultaneous transmission and reception, each FDR suffers from both its own self‐interference and the interference from the other cooperative FDRs. When the conventional cooperative relaying schemes are used in full‐duplex relaying, it is obviously expected that the self‐interference signals cause severe degradation of the secrecy capacity. Here, we propose an iterative transmit power allocation and relay beamforming weight design scheme for cooperative FDRs to enhance the secrecy rate as well as suppress the self‐interference signals. Numerical results present that the FDRs with the proposed scheme significantly improve the secrecy rate compared with the conventional half‐duplex relays. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
This paper addresses the full‐duplex relaying. Some expressions for outage and average capacity of a two‐hop cooperative system with a full‐duplex relay are derived under an independent but not identically distributed Rayleigh fading environment. Using these expressions, we provide the performance analysis without Monte Carlo simulations. The impact of interference between the relay output and input is investigated. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
Multiple‐input multiple‐output systems can achieve a full sum rate (SR) via full duplex (FD). However, its performance is degraded by self‐interference (SI) that occurs between the transmitter and receiver at the same node and thus is constrained by error floors. Conversely, half duplex (HD) can avoid the SI albeit at lower spectral efficiency, and the slope of its error curve is determined by the diversity order. In this study, a link selection scheme based on switching between FD and HD is examined as a simple method to improve the bit error rate (BER) performance of FD systems. In the proposed link selection algorithm, either FD or HD is selected based on the received minimum distance and signal‐to‐interference plus noise ratio. Simulation results indicate that the proposed hybrid FD/HD switching system offers significant BER performance improvement when compared with that of the conventional FD and FD based on only the received minimum distance under the same fixed SR. Under relatively sufficient SI cancellation, it is demonstrated to outperform the HD with a diversity advantage in low and medium signal‐to‐noise ratio region.  相似文献   

6.
Full-duplex artificial noise scheme can achieve a limited improvement while the interference power keeps increasing and the full-duplex gain is null.To solve these two problems,a full-duplex secure transmission scheme based on user cooperation was proposed,in which the full-duplex receiver used partial power to send artificial noise,and transmitted the downlink signal by the remaining power to the user who shared the same frequency.In order to maximize the system secrecy rate,the beam vector of the desired signal and the artificial noise were designed.Besides,the optimal power allocation factor was obtained by one-dimensional search simply.Simulation results show that compared with the RS-ref and HD methods,the proposed method can achieve an approximate linear growth in high power and can obtain the full-duplex gain.  相似文献   

7.
In this paper, we consider a full‐duplex system where the access point installed with multiple transmitting antennas and a single receiving antenna serves several single‐antenna remote users. In this case, there are 2 kinds of interferences. One is the near‐field self‐interference (SI) induced by the simultaneous transmitting and receiving over the same band, and the other is the cochannel interference caused by the multicast broadcasting in the same band. A problem of near‐field SI cancellation and the cochannel interference suppression using transmit beamforming is formulated at the access point. This problem of ensuring the near‐field line‐of‐sight SI suppression benchmark and maximizing the minimum received signal‐to‐interference‐plus‐noise ratio of remote receivers leads to a nonconvex NP‐hard optimization. Furthermore, we introduce a semidefinite relaxation technique coupled with linear program power adjustment and an outer bisection search loop to transform the problem into a convex optimization. This can be solved by the modern interior point methods. Simulations show that the proposed method is feasible even when the local receive antenna in near‐field and the remote receivers in far field are in the same direction.  相似文献   

8.
This paper studies optimal resource allocation for multiple network‐coded two‐way relay in orthogonal frequency division multiplexing systems. All the two‐way relay nodes adopt amplify‐and‐forward and operate with analog network coding protocol. A joint optimization problem considering power allocation, relay selection, and subcarrier pairing to maximize the sum capacity under individual power constraints at each transmitter or total network power constraint is first formulated. By applying dual method, we provide a unified optimization framework to solve this problem. With this framework, we further propose three low‐complexity suboptimal algorithms. The complexity of the proposed optimal resource allocation (ORA) algorithm and three suboptimal algorithms are analyzed, and it is shown that the complexity of ORA is only a polynomial function of the number of subcarriers and relay nodes under both individual and total power constraints. Simulation results demonstrate that the proposed ORA scheme yields substantial performance improvement over a baseline scheme, and suboptimal algorithms can achieve a trade‐off between performance and complexity. The results also indicate that with the same total network transmit power, the performance of ORA under total power constraint can outperform that under individual power constraints. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
This paper considers an underlay cognitive radio network with a full‐duplex cognitive base station and sets of half‐duplex downlink and uplink secondary users, sharing multiple channels with the primary user. The resource allocation problem to maximize the sum rate of all the secondary users is investigated subject to the transmit power constraints and the interference power constraint. The optimization problem is highly nonconvex, and we jointly use the dual optimization method and the successive convex approximation method to derive resource allocation algorithms to solve the problem. Extensive simulations are shown to verify the performance of the resource allocation algorithms. It is shown that the proposed algorithms achieve much higher sum rate than that of the optimal half‐duplex algorithms and the reference full‐duplex algorithms.  相似文献   

10.
Various sectors are likely to carry a set of emerging applications while targeting a reliable communication with low latency transmission. To address this issue, upon a spectrally‐efficient transmission, this paper investigates the performance of a 1 full‐dulpex relay system and considers for that purpose, 2 basic relaying schemes, namely, the symbol‐by‐symbol transmission, i.e., amplify‐and‐forward and the block‐by‐block transmission, i.e., selective decode‐and‐forward. The conducted analysis presents an exhaustive comparison, covering both schemes, over 2 different transmission modes, i.e., the noncombining mode where the best link, direct, or relay link is decoded and the signals combining mode, where direct and relay links are combined at the receiver side. While targeting latency purpose as a necessity, simulations show a refined results of performed comparisons and reveal that amplify‐and‐forward relaying scheme is more adapted to combining mode, whereas the selective decode‐and‐forward relaying scheme is more suitable for noncombining mode.  相似文献   

11.
We propose a new space‐time block coding (STBC) for asynchronous cooperative systems in full‐duplex mode. The orthogonal frequency division multiplexing (OFDM) transmission technique is used to combat the timing errors from the relay nodes. At the relay nodes, only one OFDM time slot is required to delay for a pair‐wise symbol swap operation. The decoding complexity is lower for this new STBC than for the traditional quasi‐orthogonal STBC. Simulation results show that the proposed scheme achieves excellent performances.  相似文献   

12.
本文研究了多接入中继信道(MARC)上全分集LDPC码的实现与性能。首先,分析了MARC模型及其固有分集,然后构造了在MARC上能取得全分集的LDPC码,新构造的码字采用根校验节点把源节点传输与中继节点传输联系起来,从而获得全分集。接着,研究了所构造码字的密度演化过程,在密度演化的基础上,进一步分析了全分集LDPC码校验矩阵的结构,给出了通过提高全分集校验比特的比例,改善全分集LDPC码在MARC上编码增益的方法。仿真结果表明,本文所提算法在MARC信道上不仅能实现全分集,而且能取得较高的编码增益。  相似文献   

13.
In this paper, we explore the advantages of network coding and space–time coding in improving the performance of two‐way‐relayed communications where two terminals absent of direct links exchange information through a single relay in between. Network coding allows embracing the interference from other terminals thereby turning it into a capacity boost. The application of space–time codes yields higher capacity by exploiting the spatial diversity. The joint performance of both techniques is studied in this paper. Specifically, we consider the class of decode‐and‐forward (DF) relaying strategy, evaluated in terms of symbol error rate using BPSK and QPSK modulations by both theoretical analysis and simulation. Based on our results, DF outperforms the amplify‐and‐decode and partial‐decode‐and‐forward protocols. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
It is considered that energy scavenging is a promising way for source node transfer energy to powered constraint relay in cooperative networks with advantage of cost‐effective maintenance and flexible deployment, which so‐called simultaneous wireless information and power transfer. In this paper, relay selection for optimal wireless energy is investigated. In terms of time switching–based relaying, this paper considers the performance comparison of 3 proposed relay selection schemes, namely, (1) optimal relay selection scheme , (2) maximum harvested energy relay selection scheme , and (3) minimum self‐interference relay selection . In particular, the system performance is studied intensively with regard to outage probability and throughput over Rayleigh fading channels. We also achieve the integral form for accurate expressions and closed form for approximate expressions. Finally, these analytical expressions are proved exactness according to Monte Carlo simulation.  相似文献   

15.
A network‐coded cooperative relaying aided free‐space optical (FSO) transmission scheme is designed. The resultant multiple‐source cooperation diversity is exploited by the relay to mitigate the strong turbulence‐induced fading experienced in FSO channels. At the destination, an iterative multiple source detection algorithm is proposed in conjunction with a chip‐level soft network decoding method. Our performance evaluation results using simulation analysis demonstrate that the proposed FSO multiple source detection is capable of approaching the single‐user‐bound for transmission over Gamma–Gamma turbulence channels. Also, the network‐coded cooperative FSO scheme can achieve a significant BER improvement in comparison with conventional noncooperation schemes. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
In cooperative transmission, cooperating nodes must hear the source messages first and forward it to the destination node with decodable composition of symbols. This restriction is one of big questions in cooperative networks since it decreases overall bandwidth‐efficiency. In this paper, we propose a scheme which alleviates it through novel use of dual carrier modulation (DCM) and an adequately designed distributed space–time block code (DSTBC). The proposed scheme achieves comparable error performance to the conventional one while providing 20% higher transmission rate. The performance is always guaranteed by the signal‐to‐noise ratio (SNR) based adaptive cooperation algorithm. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
This paper assumes two users and a two‐way relay network with the combination of 2×2 multi‐input multi‐output (MIMO) and nonorthogonal multiple access (NOMA). To achieve network reliability without sacrificing network throughput, network‐coded MIMO‐NOMA schemes with convolutional, Reed‐Solomon (RS), and turbo codes are applied. Messages from two users at the relay node are network‐coded and combined in NOMA scheme. Interleaved differential encoding with redundancy (R‐RIDE) scheme is proposed together with MIMO‐NOMA system. Quadrature phase‐shift keying (QPSK) modulation technique is used. Bit error rate (BER) versus signal‐to‐noise ratio (SNR) (dB) and average mutual information (AMI) (bps/Hz) versus SNR (dB) in NOMA and MIMO‐NOMA schemes are evaluated and presented. From the simulated results, the combination of MIMO‐NOMA system with the proposed R‐RIDE‐Turbo network‐coded scheme in two‐way relay networks has better BER and higher AMI performance than conventional coded NOMA system. Furthermore, R‐RIDE‐Turbo scheme in MIMO‐NOMA system outperforms the other coded schemes in both MIMO‐NOMA and NOMA systems.  相似文献   

18.
In stationary camera sensor networks (CSNs), when the deployment characteristics and sensing models are defined, the coverage can be deduced and remain unchanged over time. However, in the maritime environment, the rough and random sea condition can move CSN from the initial location. We envisage that camera sensors are mounted on quasi‐mobile platforms such as buoys. Hence, it is important to understand the effect of realistic sea surface movements in achieving full‐view coverage because in full‐view coverage, target's facing direction is taken into account to judge whether a target is guaranteed to be captured because image shot at the frontal viewpoint of a given target considerably increases the possibility to detect and recognize the target. To accurately emulate the maritime environment, the movement of the buoy, which is attached with a cable that is nailed at the sea floor, has been characterized based on the sea wave that is created by the wind, and it is limited by the cable. The average percentage of full‐view coverage has been evaluated based on different parameters such as equilateral triangle grid length, sensing radius of camera, wind speed and wave height. Furthermore, a method to improve the target detection and recognition has been proposed in the presence of poor link quality using cooperative transmission with low power consumption. In some parameter scenario, the cooperative transmission method has achieved around 70% improvement in the average percentage of full‐view coverage of a given target and total reduction of around 13% for the total transmission power PTotal(Q). Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
Cognitive nonorthogonal multiple access (NOMA) technique allows multiple users to share the same time and same frequency resources to fulfil the reliability and spectral efficiency requirements of 5G communication standards. In this paper, simultaneous wireless information and power transfer (SWIPT)–based full‐duplex cognitive NOMA downlink system is proposed. In this system, secondary source (SS) serves as a relay to far primary user as there is no direct link from the primary source. NOMA technique is used at SS to transmit information to far primary user and secondary user. The time switching mechanism is adopted at SS for harvesting energy and information decoding. Analytical closed‐form expressions are derived for the outage probabilities of both primary and secondary users. Outage analysis is carried out in Nakagami‐ fading environment in the presence of self‐interference at SS. In addition to that, the optimal harvesting time to maximize the instantaneous throughput of the far primary user is also derived. Numerical results are plotted to validate the derived expressions. It is inferred that the outage probability of the proposed system depends on the fading environment, harvesting parameters, and self‐interference at SS.  相似文献   

20.
This paper proposes a new physical‐layer network coding (PNC) scheme, named combined orthogonal PNC (COPNC), for fading two‐way relay channels. The scheme is based on orthogonal PNC (OPNC). In the scheme, the two source nodes employ orthogonal carriers, and the relay node makes an orthogonal combining of the two information bits rather than exclusive or (XOR), which is employed in most PNC schemes. The paper also analyzes the bit error rate (BER) performance of PNC, OPNC, and COPNC for Rayleigh fading model. Simulation results for Rayleigh and Nakagami‐m fading channels show that COPNC can provide outstanding BER performance compared with PNC and OPNC, especially when the uplink channel conditions are asymmetric. The results in Nakagami‐m channels also imply that COPNC will provide higher BER gain with more severe fading depth. Potential works about COPNC are also presented in this paper. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号