首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
本文利用"黑渣粉",即煤变油项目排出的尾渣作为配制水泥的混合材,研究了不同掺量黑渣粉a(无石膏掺加的黑渣粉)、黑渣粉b(石膏掺量为10%的黑渣粉)对水泥的凝结时间、胶砂流动度、标准稠度用水量、胶砂强度的性能影响。试验结果表明:黑渣粉的掺入可降低水泥胶砂流动度,降低水泥凝结时间,水泥标准稠度用水量有所增加,但增加幅度不大;黑渣粉掺量越大,水泥强度下降幅度越大,当掺量为30%时,水泥胶砂抗压强度不符合技术要求。综上所述,黑渣粉掺量范围在10%~20%,水泥各项性能均能达到标准要求。  相似文献   

2.
自燃煤矸石作水泥混合材的试验研究   总被引:2,自引:0,他引:2  
以磨细自燃煤矸石等量取代水泥熟料,制成自燃煤矸石水泥。试验研究了自燃煤矸石的掺量对水泥净浆流动度、标准稠度需水量、凝结时间和胶砂强度的影响。研究结果表明:自燃煤矸石可以作为水泥混合材使用,其掺量宜控制在30%以内。  相似文献   

3.
研究不同粉磨方式,尤其优化粉磨对矿渣水泥性能的影响。结果表明:粉磨方式、矿渣掺量以及矿渣熟料粉比表面积会影响矿渣水泥的标准稠度用水量、凝结时间和胶砂强度;优化粉磨矿渣水泥的3d和28d强度分别与矿渣熟料粉比表面积及矿渣掺量有关;与传统42.5强度等级的复合水泥相比,优化粉磨矿渣水泥的熟料用量可降低约40%,大幅度降低水泥的碳排放量。  相似文献   

4.
以水淬镍渣为原料,经机械球磨、筛分、陈化等工艺对镍渣进行预处理;将预处理后的镍渣加入到硅酸盐水泥熟料中,经二次球磨后制备镍渣水泥,研究了镍渣的掺量对水泥基本性能的影响.结果表明:镍渣掺量对水硅酸盐水泥的物理力学性能有重要影响.当将预处理后的镍渣以0%~20%等量取代水泥熟料时,水泥的标准稠度用水量下降,凝结时间增长,体积安定性良好,强度有所降低,但主要指标均满足水泥基本性能的要求.当镍渣掺量为20%时,制备的水泥胶砂试块3d和28 d抗压强度分别为23.6 MPa和40.2 MPa,抗折强度分别为5.2 MPa和8.6 MPa.  相似文献   

5.
采用XRD分析了掺入钢渣水泥的水化产物,并从标准稠度用水量、凝结时间、强度几方面论证了磨细钢渣对水泥水化性能的影响。结果表明:适度磨细的钢渣能减小水泥的标准稠度用水量,但过度磨细后会增加标准稠度用水量,凝结时间也有类似的结果;钢渣的最佳掺量为10%,此时28d强度达54.5MPa,物相主要为C2SH(C),AFt和Ca(OH)2,养护90d未见Aft向AFm转变。  相似文献   

6.
为提高水泥胶砂的养护质量,将高吸水树脂材料自养护剂掺入不同水泥胶砂中,研究自养护剂对标准稠度水泥用水量、凝结时间的影响,分析水泥胶砂的力学性能及干缩性能,揭示自养护剂的养护机理。结果表明:自养护剂前期会吸收大量水分,增加了水泥的标准稠度用水,后期在水泥中缓慢释放水分参与水泥的水化,延长水泥的凝结时间。自养护剂的掺入前期会降低水泥胶砂的抗压、抗折强度,水泥型号越高这种影响越小。后期会提高上述强度,当自养护剂掺量为水泥质量的0.2%时,强度达到最大。自养护剂的掺入为试件内部水泥水化提供了水分,可降低水泥胶砂的干缩量,提高水泥胶砂干缩性能。  相似文献   

7.
杨林  严云  胡志华  周科  李正银 《水泥》2012,(7):7-10
基于硫铝酸盐水泥、硅酸盐水泥各自的特点,研究了二者复配后的标准稠度用水量、凝结时间、水化热效应、胶砂强度、膨胀性、水化产物的物相及微观形貌。结果表明,复配水泥的标准稠度用水量因复配比例不同而变化,凝结时间相对于占主导地位的单组分水泥明显缩短;复配水泥的早期水化速率得到提高,1d、7d的水化放热量均低于占主导地位的单组分水泥;28d抗压、抗折强度低于任何单组分水泥;膨胀性的大小取决于两种水泥的复配比例;硫铝酸盐水泥与硅酸盐水泥的复配使二者的水化相互促进,随着硫铝酸盐水泥掺量的增加,Ca(OH)2相的衍射峰减弱,AFt相的衍射峰增强;纯硅酸盐水泥水化后的微观形貌是致密的,而与硫铝酸盐水泥复配后则出现微观裂纹。  相似文献   

8.
利用废弃混凝土制备全组分混凝土细粉,研究细粉对水泥标准稠度需水量、凝结时间、胶砂强度和化学结合水的影响,并采用XRD、TG-DSC等测试技术,研究其对水泥水化产物的影响.研究结果表明:细粉不影响水泥的标准稠度需水量,但缩短了水泥的凝结时间;低掺量下细粉对胶砂强度影响不大,但掺量超过10%时,胶砂强度随着掺量的增大不断降低;细粉的掺入虽然促进了浆体中水泥的水化,但却降低了浆体的总水化程度;细粉中的石灰石可以与水泥水化产物发生反应,生成单碳水化铝酸钙.  相似文献   

9.
本文研究了不同硼酸掺量下的硫铝酸盐基复合胶凝材料的标准稠度用水量和凝结时间及安定性,抗压、抗折强度变化规律,并利用XRD和SEM测试方法对复合胶凝材料的水化机理进行分析。结果表明:硼酸的掺入不影响胶凝材料的安定性,但使标准稠度用水量增加,且标准稠度用水量与硼酸掺量成反比;硼酸掺量越大,初、终凝时间延长越明显;当硼酸掺量为0.20%(质量分数)时,硫铝酸盐水泥占比高的试验组早期强度提高,且后期强度不倒缩;硼酸可使钙矾石的形态更粗壮。掺加硼酸可使复合材料的干缩率降低,质量变化率呈下降趋势。  相似文献   

10.
实验采用有机化合物复配无机盐的方式,制成三种液体复合助磨剂,通过测定矿渣硅酸盐水泥细度、标准稠度、凝结时间、安定性和胶砂强度,研究不同助磨剂及助磨剂不同掺量对矿渣硅酸盐水泥物理性能的影响,并利用激光粒度仪和扫描电镜测试与分析了水泥的粒度分布和颗粒形貌.结果表明:三种助磨剂均能不同程度降低水泥筛余,提高水泥比表面积,提高幅度为2.9%~18.3%;掺入助磨剂后,水泥的颗粒形貌趋向于圆球形,水泥粒度分布发生变化,3~32 μm颗粒含量显著增加,中位粒径降低,其中B3水泥试样中位粒径为18.94 μm,降低了5.21μm;水泥凝结时间缩短,标准稠度变化不大,安定性符合国家标准;助磨剂能显著提高水泥各龄期胶砂强度.B3试样3d抗折强度为4.3 MPa,3d抗压强度为15.1 MPa,符合P·S 32.5R级标准要求.  相似文献   

11.
马军雷 《水泥》2009,(8):13-15
对Horomill系统的生产能力和能耗进行了分析,同时对Horomill系统生产的水泥性能进行研究。结果表明,水泥的颗粒形貌特征及颗粒级配十分合理,80μm以上的颗粒基本不存在,对比其他类型的粉磨系统,水泥的标准稠度用水量增加10%-15%,凝结时间降低20~50min,有利于水泥强度的发挥。水泥的3d抗压强度增加4-6MPa,28d抗压强度增加约3MPa。随着混合材掺量的增加,水泥的标准稠度用水量和凝结时间都有着显著变化。  相似文献   

12.
掺煤矸石的水泥性能与颗粒群分布的关系研究   总被引:2,自引:0,他引:2  
张永娟  张雄 《水泥》2003,(11):4-7
将不同细度的煤矸石、纯硅酸盐水泥分别按30%和70%的比例混合,测其胶砂流动度、净浆标准稠度用水量和3d、28d胶砂抗压强度。以宏观性能指标为z轴,水泥与煤矸石的中位径D50之差为x轴,水泥与煤矸石混合样的中位径D50为y轴,进行三维区域图分析。给出各项性能指标发展趋势与水泥、煤矸石的相对位置以及混合体系总体细度的相互关系。  相似文献   

13.
煤矸石对硬化水泥浆体结构形成的影响   总被引:3,自引:0,他引:3  
施惠生 《水泥》2005,(8):1-4
通过对硬化水泥浆体物理力学性能的检测,结合XRD和SEM分析,研究了不同掺量的煤矸石对硬化水泥浆体水化性能的影响。结果表明:随着煤矸石掺量的增加,水泥的标准稠度用水量增加,凝结时间缩短,抗压强度降低,熟料矿物的水化速率提高,水泥-煤矸石体系的水化速率降低。煤矸石掺量不同,水化模式亦不同。  相似文献   

14.
选择煤矸石、镁渣、粉煤灰等工业废渣作为主体原料,对原料进行粉磨筛分等处理;利用荧光分析仪和X 衍射仪检测原料的组成;设计了3组共计9个配方:煤矸石底渣+镁渣+熟料+石膏组3个、煤矸石底渣+粉煤灰+生石灰+石膏组3个、煤矸石底渣+粉煤灰+生石灰组3个;测定9个配方胶凝材料的强度、凝结时间、标准稠度、安定性等物理性能,结果表明:在生石灰、石膏双激发作用下,煤矸石灰渣、粉煤灰的水化硬化程度较高,制得的胶凝材料强度最高、28 d抗折强度可达8.2 MPa、抗压强度可达42.4 MPa。实验得到此方案的最佳配比:m(煤矸石灰渣)∶m(粉煤灰)∶m(生石灰)∶m(石膏)=15∶30∶45∶10。  相似文献   

15.
煤矸石对硅酸盐水泥水化历程的影响   总被引:8,自引:0,他引:8  
从强度、反应程度、孔溶液碱度和SEM等方面,研究了煤矸石作为水泥辅助胶凝材料的水化情况,并与Ⅱ级粉煤灰进行比较。试验结果表明:煤矸石发生火山灰反应时间比粉煤灰早,且发生火山灰反应所需的碱度值比粉煤灰低;掺煤矸石水泥水化样的早期抗压强度比粉煤灰水泥水化样低,但7d到28d强度增长速率明显大于相同掺量的粉煤灰水泥,相同28d抗压强度的条件下,煤矸石掺量比粉煤灰的掺量高10%。  相似文献   

16.
以Texaco气化炉渣、石灰石、粘土和铁粉为原料制备硅酸盐水泥熟料,分别采用X射线衍射仪、金相显微镜对该熟料的物相以及岩相结构进行分析,掺加适量石膏后,依据国标检测水泥的标准稠度用水量、安定性、凝结时间以及龄期强度,推断出制备水泥的标号.结果表明:(1)制备的水泥熟料主要矿相为硅酸三钙、硅酸二钙、铝酸三钙、铁酸钙.(2)当粘土加入量为5%,烧成温度为1450℃时,烧制的水泥28 d抗折强度、抗压强度分别为8.0 MPa、50.9 MPa,可推断其标号为42.5水泥.  相似文献   

17.
在水泥胶砂中掺入适当配比的煤矸石可以增加水泥砂浆的强度,尤其是早期强度.与不添加煤矸石的基准砂浆相比,煤矸石的掺量为9%时,砂浆3 d抗压强度提高1.0 MPa,28 d抗压强度提高2.0 MPa.XRD、TGA-DTA和SEM分析证实:加入煤矸石促进了水泥砂浆7 d早期水化反应,生成水化产物钙矾石、C-S-H凝胶、AFm和氢氧化钙,且水化产物的数量亦不同,各产物的晶型结构也不相同,改性后水化产物增多,水化速率加快,因而影响砂浆的宏观力学强度.  相似文献   

18.
利用循环流化床固硫灰替代部分原材料,制备以硫铝酸钙、硅酸二钙为主要矿物的高贝利特-硫铝酸盐水泥熟料,然后通过激光粒度分析仪和扫描电镜研究熟料的颗粒细度及形貌对其性能的影响。结果显示:利用振动磨粉磨的高贝利特-硫铝酸盐水泥颗粒组成中<3μm细粉颗粒含量增多,凝结时间变短,需水量增加,相应地早期胶砂干缩率随之减小;其早期线性膨胀率与3~10μm范围内的颗粒含量呈正相关关系,后期的线性膨胀率随着30~60μm内的颗粒含量增加而增大;3d强度随着10~30μm范围内的颗粒含量增加而增大,而10~30μm范围内的颗粒含量对28d强度的发展起主要作用;利用球磨机粉磨的以多角形颗粒为主的高贝利特-硫铝酸盐水泥表现出标准稠度用水量高、凝结时间短、线性膨胀率和胶砂干缩率大的特点。  相似文献   

19.
Guanghong Sheng  Qin Li  Feihu Li 《Fuel》2007,86(16):2625-2631
Fly ash coming from a circulating fluidized bed combustion (CFBC) boiler co-firing coal and petroleum coke (CFBC fly ash) is very different from coal ash from traditional pulverized fuel firing due to many differences in their combustion processes, and thus they have different effects on the properties of Portland cement. The influences of CFBC fly ash on the strength, setting time, volume stability, water requirement for normal consistency, and hydration products of Portland cement were investigated. The results showed that CFBC fly ash had a little effect on the strength of the Portland cement when its content was below 20%, but the strength decreased significantly if the ash content was over 20%. The water requirement for normal consistency of cement increased from 1.8% to 3.2% (absolute increment value) with an addition of 10% CFBC fly ash; and the free lime (f-CaO) content of CFBC fly ash affected the value of increasing. The setting time decreased with an increase of CFBC fly ash content. The volume stability of the cement was qualified even when the content of SO3 and f-CaO reached 4.48% and 3.0% in cement, respectively. The main hydration productions of cement with CFBC fly ash were C-S-H (hydrated calcium silicate), AFt (ettringite), and portlandite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号