首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Dietary phosphorus restriction up-regulates intestinal vitamin D receptor (VDR), but the tissue specificity of the up-regulation and the mechanism of receptor accumulation remain unknown. Therefore, the effects of low phosphorus diet (LPD) on VDR content in intestine, kidney, and splenic monocytes/macrophages were examined. Male Sprague-Dawley rats weighing 50-100 g were fed a normal diet (NPD; 0.6% Ca, 0.65% P) as controls followed by an LPD (0.6% Ca, 0.1% P) for 1-10 days (D1-D10). LPD rapidly decreased serum P levels by D1 from 11.11 +/- 0.19 mg/dl (mean +/- SE) to 4.98 +/- 0.37 mg/dl (n = 9). LPD increased total serum Ca from 10.54 +/- 0.09 mg/dl to 11.63 +/- 0.15, 12.17 +/- 0.15, and 12.39 +/- 0.18 mg/dl by D1, D2, and D3, respectively, and then remained stable. Serum 1,25-(OH)2D3 rapidly increased from 123 +/- 5.4 pg/ml to 304 +/- 35 pg/ml by D1, reached a plateau through D5, and then gradually increased to 464.9 +/- 27.7 pg/ml by D10. Intestinal VDR quantitated by ligand binding assay increased 3.5-fold from 169.6 +/- 13.7 fmol/mg of cytosol protein in rats fed NPD (n = 12) to a peak of 588.3 +/- 141.88 fmol/mg of protein by D3 (n = 6; p < 0.001) and then decreased to a plateau level of 2.5-fold greater than NPD (p < 0.05) during D5 to D10. In contrast, LPD did not up-regulate kidney or splenic monocyte/macrophage VDR. Northern blot analysis showed that intestinal VDR mRNA increased 2-fold by D2 (n = 3) of LPD and then gradually decreased to control levels after D5. In contrast, kidney VDR mRNA levels did not change during the first 5 days of P restriction and then subsequently decreased to 50% of NPD controls. The results of these studies indicate that VDR up-regulation during dietary phosphorus restriction is tissue-specific and that the mechanism of the up-regulation is time-dependent. Acutely (D1-D5), phosphorus restriction up-regulates intestinal VDR through increased VDR gene expression, whereas chronic (D5-D10) phosphorus restriction appears to alter VDR metabolism through nongenomic mechanisms that are consistent with prolongation of the half-life of the receptor. The nature of the tissue-specific regulation of VDR during phosphorus restriction remains to be determined.  相似文献   

2.
3.
4.
5.
6.
It has been well established that human mononuclear phagocytes have the capacity to produce 1,25-dihydroxy-vitamin D3 [1,25(OH)3D3] and express the vitamin D receptor (VDR). However, 1 alpha-hydroxylase activity and VDR receptor expression during differentiation of monocytes (MO) into mature macrophages (MAC) have not been previously examined. The in vitro maturation of blood MO can serve as a model for the in vivo transformation of immature blood MO into MAC. Here, when cultured in the presence of serum, MO undergo characteristic changes in morphology, antigenic phenotype, and functional activity consistent with their differentiation into MAC. We serially measured 1,25(OH)2D3 and 24,25-dihydroxyvitamin D3 [24,25(OH)2D3] synthesis, specific [3H]-1,25(OH)2D3 binding, and VDR mRNA levels during in vitro maturation of MO into MAC and correlated these functions with maturation-associated changes in the phenotype (MAX.1 and CD71) and secretory repertoire (interleukin-1 beta [IL-1 beta], neopterin) of the cells. MO showed only little conversion of 25-(OH)D3 into 1,25(OH)2D3 (1.4 +/- 0.4 pmol/10(6) cells/6 h, n = 5) that increased gradually during maturation into MAC at day 8 of culture (5.3 +/- 4.3 pmol/10(6) cells/6 h, n = 5). Interferon-gamma (IFN-gamma) increased baseline 1,25(OH)2D3-synthesis approximately twofold during all phases of differentiation. The time course of increased 1,25(OH)2D3-synthesis correlated with enhanced secretion of neopterin and expression of MAX.1 and CD71. The addition of exogenous 1,25(OH)2D3 did not influence constitutive 1,25(OH)2D3 synthesis, but IFN-gamma-stimulated production was suppressed to baseline levels. Exogenous 1,25(OH)2D3 also stimulated 24,25(OH)2D3 synthesis in freshly isolated MO (from 1.0 +/- 0.8 pmol/6 h to 5.6 +/- 0.9 pmol), whereas matured MAC showed no 24,25(OH)2D3 synthesis. Furthermore, we examined the expression of the VDR during the differentiation process. VDR mRNA and protein were constitutively expressed in MO, whereas VDR was downregulated in mature MAC on both the mRNA and protein levels. Homologous upregulation of VDR protein by 1,25(OH)2D3 occurred in MO and, to a lesser degree, in MAC. In contrast, VDR mRNA concentrations were not influenced by 1,25(OH)2D3. Taken together, our results show that MO into MAC differentiation in vitro is associated with (1) an enhanced capacity to synthesize 1,25(OH)2D3, (2) a loss of 24,25(OH)2D3-synthesizing activity, and (3) a decrease in the expression of VDR mRNA and protein. Because 1,25(OH)2D3 was shown to induce differentiation of MO into MAC, our data sugest an autoregulatory mechanism of MO/MAC generation by 1,25(OH)2D3.  相似文献   

7.
8.
Human and murine osteocalcin genes demonstrate similar cell-specific expression patterns despite significant differences in gene locus organization and sequence variations in cis-acting regulatory elements. To investigate whether differences in these regulatory regions result in an altered response to 1,25-dihydroxyvitamin D3 [1,25-(OH)2D3] in vivo, we compared the response of the endogenous mouse osteocalcin gene to a bacterial reporter gene directed by flanking regions of the human osteocalcin gene in transgenic mice. Transgene expression colocalized with endogenous osteocalcin expression in serial sections, being detected in osteoblasts, osteocytes and hypertrophic chondrocytes. In calvarial cell culture lysates from transgenic and nontransgenic mice, the endogenous mouse osteocalcin gene did not respond to 1,25-(OH)2D3 treatment. Despite this, transgene activity was significantly increased in the same cells. Similarly, Northern blots of total cellular RNA and in situ hybridization studies of transgenic animals demonstrated a maximal increase in transgene expression at 6 h after 1,25-(OH)2D3 injection (23.6+/-3.6-fold) with a return to levels equivalent to uninjected animals by 24 h (1.2+/-0.1-fold). This increase in transgene expression was also observed at 6 h after 1,25-(OH)2D3 treatment in animals on a low calcium diet (25.2+/-7.7-fold) as well as in transgenic mice fed a vitamin D-deficient diet containing strontium chloride to block endogenous 1,25-(OH)2D3 production (7.5+/-0.9-fold). In contrast to the increased transgene expression levels, neither endogenous mouse osteocalcin mRNA levels nor serum osteocalcin levels were significantly altered after 1,25-(OH)2D3 injection in transgenic or nontransgenic mice, regardless of dietary manipulations, supporting evidence for different mechanisms regulating the response of human and mouse osteocalcin genes to 1,25-(OH)2D3. Although the cis- and trans-acting mechanisms directing cell-specific gene expression appear to be conserved in the mouse and human osteocalcin genes, responsiveness to 1,25-(OH)2D3 is not. The mouse osteocalcin genes do not respond to 1,25-(OH)2D3 treatment, but the human osteocalcin-directed transgene is markedly upregulated under the same conditions and in the same cells. The divergent responses of these homologous genes to 1,25-(OH)2D3 are therefore likely to be due to differences in mouse and human osteocalcin-regulatory sequences rather than to variation in the complement of trans-acting factors present in mouse osteoblastic cells. Increased understanding of these murine-human differences in osteocalcin regulation may shed light on the function of osteocalcin and its regulation by vitamin D in bone physiology.  相似文献   

9.
Metabolic acidosis has been shown to alter vitamin D metabolism. There is also evidence that calcium may modulate 1,25(OH)2D3 by a parathyroid hormone (PTH)-independent mechanism. To investigate the effect of rapid correction of chronic metabolic acidosis on serum 1,25(OH)2D3 levels by free calcium clamp in chronic renal failure, 20 patients with mild to moderate metabolic acidosis (mean pH 7.31 +/- 0.04) and secondary hyperparathyroidism (mean intact PTH 156.47 +/- 84.20 ng/l) were enrolled in this study. None had yet received any dialysis therapy. Metabolic acidosis was corrected by continuous bicarbonate infusion for 3-4 h until plasma pH was around 7.4, while plasma ionized calcium was held at the preinfusion level by calcium solution infusion during the entire procedure. The plasma pH, bicarbonate, total CO2, sodium, and serum total calcium levels were significantly increased while serum concentrations of alkaline phosphatase and albumin were significantly decreased after bicarbonate infusion. The plasma ionized calcium, potassium, serum magnesium, inorganic phosphorus, and 25(OH)D levels showed no significant change before and after bicarbonate infusion. The serum 1,25(OH)2D3 levels were significantly increased (38.66 +/- 11.77 vs. 47.04 +/- 16.56 pmol/l, p < 0.05) after correction of metabolic acidosis. These results demonstrate that rapid correction of metabolic acidosis raises serum 1,25(OH)2D3 levels in vitamin D-deficient chronic renal failure patients, and may underline the importance of maintaining normal acid-base homeostasis in the presence of secondary hyperparathyroidism in chronic renal failure.  相似文献   

10.
This study examines the influence of chronic retroviral infection of mice with a LPBM5 virus mixture on the paracrine system involving immune cells and 1,25-(OH)2D3 in the spleen. Plasma ionized calcium, 25-(OH)D and 1,25-(OH)2D of infected mice were unchanged. In contrast, the specific binding of 1,25-(OH)2D3 to spleen cytosol and the number of monocyte/macrophages expressing 1,25-(OH)2D3 receptors (VDR) were markedly increased. The retroviral infection also influenced the local production of 1,25-(OH)2D3 in the spleen. It did not alter this production in monocyte/macrophages but increased that in isolated T cells. Isolated B cells in control mice did not produce 1,25-(OH)2D3, but they increased the ability of isolated T cells to produce this metabolite during coculture incubations. Infection altered this cell interaction as 1,25-(OH)2D3 production in infected T cells decreased when these cells were cocultured with infected B cells. Thus, chronic retroviral infection alters both the local vitamin D metabolism and VDR expression by immune cells in mice. These findings suggest close local interactions between 1,25-(OH)2D3 and immune system activation during retroviral infection.  相似文献   

11.
12.
In the past, there has been considerable concern that treatment with active vitamin D might accelerate progression independent of hypercalcemia and hypercalcuria. Nevertheless, 1,25(OH)2D3 has known antiproliferative properties and has also been shown to inhibit renal growth. Since glomerular growth is a permissive factor for the development of glomerulosclerosis, we reasoned that 1,25(OH)2D3 might even attenuate progression. To test this working hypothesis we performed two experiments of 8 and 16 weeks duration, respectively, to compare subtotally nephrectomized (SNX) rats treated with ethanol and SNX treated with 1,25(OH)2D3. Control animals were sham operated and pair-fed with SNX animals. 1,25(OH)2D3 (3 ng/100 g body wt/day) was administered by osmotic minipump. 1,25(OH)2D3 had no significant effect on systolic blood pressure and only a transient effect on weight gain. SNX reduced the number of glomeruli (left kidney) from an average of 3.3 x 10(4) to 1.2 x 10(4) per kidney. Mean glomerular volume was 3.87 +/- 0.71 x 10(6) microns 3 in sham operated animals and significantly (P < 0.05) higher (10.1 +/- 1.75 x 10(6) microns 3) in untreated animals 16 weeks after SNX. Glomerular volume was significantly (P < 0.05) less in 1,25(OH)2D3 treated SNX [10.1 +/- 1.75 in ethanol vs. 7.04 +/- 1.78 in 1,25(OH)2D3 treated SNX]. In parallel, there was significantly (P < 0.01) less glomerulosclerosis [glomerulosclerosis index 1.16 +/- 0.14 in the ethanol treated SNX vs. 0.80 +/- 0.16 in SNX treated with 1,25(OH)2D3] in the eight week experiment. Albuminuria was significantly (P < 0.01) lower in 1,25(OH)2D3 treated than in ethanol treated SNX (mean 0.785 mg/24 hr, range 0.43 to 1.80, vs. 3.75 mg/24 hr, 1.29 to 14.2). The morphological data were directionally analogous in a second 16 week experiment. Only slight changes of the vascular sclerosis index and tubulointerstitial index were seen in SNX and were not affected by 1,25(OH)2D3 further. To prove that the effect of 1,25(OH)2D3 was independent of PTH, parathyreoidectomized SNX rats without or with 1,25(OH)2D3 treatment were examined seven days post-SNX. PCNA staining showed suppression of cell proliferation. Furthermore, in situ hybridization for transforming growth factor-B (TGF-beta) showed less vascular and tubular expression in 1,25(OH)2D3 treated rats. We conclude that 1,25(OH)2D3 has antiproliferative actions during the compensatory growth of nephrons in response to subtotal nephrectomy. These effects are independent of PTH. The data document that 1,25(OH)2D3 reduces renal cell proliferation and glomerular growth as well as glomerulosclerosis and albuminuria as indicators of progressive glomerular damage.  相似文献   

13.
BACKGROUND: It has been suggested that the vitamin D receptor (VDR) gene BsmI-polymorphism is a genetic determinant of bone metabolism. DESIGN: To test this hypothesis, the relationship between VDR genotypes, bone mineral density (baseline and after 18 months) and parameters of calcium metabolism and bone turnover were investigated prospectively in 88 haemodialysed patients not receiving active vitamin D metabolites. METHODS: Whole body, lumbar spine and femoral neck bone mineral density (BMD) were assessed by dual energy X-ray absorptiometry (DEXA). In addition calcium, phosphorus, 25(OH)D3, 1,25(OH)2D3, osteocalcin serum concentrations, alkaline phosphatase activity and intact 1,84 PTH levels were measured. RESULTS: VDR genotype BB, Bb and bb were found in 27, 49 and 24% of patients. Initial BMD (g/cm2) of whole body, lumbar spine and femoral neck did not differ between genotypes (whole body: BB 1.055 +/- 0.120, Bb 1.082 +/- 0.102, bb 1.128 +/- 0.120; lumbar spine: BB 1.075 +/- 0.199, Bb 1.079 +/- 0.185, bb 1.099 +/- 0.170; femoral neck: BB 0.808 +/- 0.160, Bb 0.862 +/- 0.127, bb 0.842 +/- 0.125; mean +/- SD), but the decrease of whole body and femoral neck BMD during 18 months was significantly (P < 0.02) different between the genotype groups (whole body: BB -0.048 +/- 0.028, Bb -0.031 +/- 0.029, bb -0.024 +/- 0.023; femoral neck BB -0.044 +/- 0.069, Bb -0.032 +/- 0.081, bb -0.012 +/- 0.029 g/cm2). CONCLUSION: This preliminary study suggests faster mineral loss in BB genotype of VDR in haemodialysed patients.  相似文献   

14.
15.
26,26,26,27,27,27-Hexafluoro-1,25-dihydroxyvitamin D3 (ST-630) is a newly developed agent to maintain the levels of calcium and phosphorus in blood. Herein, we investigated the effect of this compound on the expression of vitamin-D-responsive genes in vitamin-D-deficient mice. ST-630 was more effective than 1, 25-dihydroxyvitamin D3 [1,25(OH)2D3] with respect to the induction of Cyp24 and calbindin-D9k mRNAs in the kidney and in the small intestine. Moreover, the increase in mRNA levels of vitamin-D-responsive genes induced by ST-630 lasted longer than that induced by 1,25(OH)2D3. These results indicate that ST-630 was more effective in inducing Cyp24 and calbindin-D9k gene expression than 1, 25(OH)2D3 when both compounds were injected into vitamin-D-deficient mice.  相似文献   

16.
Calcium metabolism was studied in 47 patients with borderline or lepromatous leprosy. Total and ionized calcium, phosphorus, creatinine, total alkaline phosphatase, parathyroid hormone (PTH), 25-hydroxy vitamin D [25(OH)D], and 1,25-dihydroxy vitamin D [1,25(OH)2D] were measured in serum; calcium and total hydroxyproline were determined in urine. Total subperiosteal diameter and medullar cavity diameter were measured on an X-ray of the hand of all patients. Average values were within normal ranges for all of the biochemical determinations. Total serum calcium was moderately below the normal range in eight patients but ionized calcium levels were within the normal ranges in all of the patients. Four patients, all of them with lepromatous leprosy, had levels of 1,25(OH)2D higher than normal but none of them was hypercalcemic and PTH levels were within normal range. Although all values were within the normal ranges, lepromatous leprosy patients had lower total calcium, higher alkaline phosphatase, and higher urinary hydroxyproline than borderline leprosy patients (9.1 +/- 0.4 vs 9.4 +/- 0.3 mg%, p < 0.001; 10.3 +/- 2.9 vs 7.4 +/- 2.3 King-Armstrong units, p < 0.02 and 27.2 +/- 12 vs 19.4 +/- 5.6 mg/24 hr, p < 0.02, respectively). No differences were found between patients and controls in the average micrometric measurements of the second metacarpal bone but significant osteopenia was found in 19% of the patients. The main finding of the present study in a representative sample of leprosy patients is that the average total serum calcium was in the lowest limit of the normal range, but the ionized serum calcium was in the middle of the normal range.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
We examined expression of the 1,25-dihydroxyvitamin D3 [1,25-(OH)2 D3] receptors in chromaffin cells of the adrenal medulla and the effects of 1,25(OH)2 D3 on expression of the tyrosine hydroxylase (TH) gene. Accumulation of 1,25(OH)2 D3 in the nuclei of adrenal medullary cells, but not in the adrenal cortex, was observed in mice intravenously injected with radioactively labeled hormone. 1,25(OH)2 D3 produced concentration-dependent increases in the TH mRNA levels in cultured bovine adrenal medullary cells (BAMC). The maximal increases (2-3-fold) occurred at 10(-8) M 1,25(OH)2 D3. Combined treatment with 1,25(OH)2 D3 and 20 microM nicotine had no additive effect on TH mRNA levels suggesting that transsynaptic (nicotinic) and vitamin D (hormonal) stimulation of TH gene expression are mediated through converging mechanisms. Induction of TH mRNA by 1,25(OH)2 D3 was not affected by calcium antagonist TMB-8. By increasing expression of the rate limiting enzyme in the catecholamine biosynthetic pathway, 1,25-(OH)2 D3 may participate in the regulation of catecholamine production in adrenal chromaffin cells. This regulation provides mechanisms through which 1,25(OH)2 D3 may control response and adaptation to stress.  相似文献   

18.
19.
1,25-(OH)2D3 and 24,25-(OH)2D3 mediate their effects on chondrocytes through the classic vitamin D receptor (VDR) as well as through rapid membrane-mediated mechanisms which result in both nongenomic and genomic effects. In intact cells, it is difficult to distinguish between genomic responses via the VDR and genomic and nongenomic responses via membrane-mediated pathways. In this study, we used two hybrid analogues of 1,25-(OH)2D3 which have been modified on the A-ring and C,D-ring side chain (1 alpha-(hydroxymethyl)-3 beta-hydroxy-20-epi-22-oxa-26,27-dihomo vitamin D3 (analogue MCW-YA = 3a) and 1 beta-(hydroxymethyl)-3 alpha-hydroxy-20-epi-22-oxa-26,27-dihomo vitamin D3 (analogue MCW-YB = 3b) to examine the role of the VDR in response of rat costochondral resting zone (RC) and growth zone (GC) chondrocytes to 1,25-(OH)2D3 and 24,25-(OH)2D3. These hybrid analogues are only 0.1% as effective in binding to the VDR from calf thymus as 1,25-(OH)2D3. Chondrocyte proliferation ([3H]-thymidine incorporation), proteoglycan production ([35S]-sulfate incorporation), and activity of protein kinase C (PKC) were measured after treatment with 1,25-(OH)2D3, 24,25-(OH)2D3, or the analogues. Both analogues inhibited proliferation of both cell types, as did 1,25-(OH)2D3 and 24,25-(OH)2D3. Analogue 3a had no effect on proteoglycan production by GCs but increased that by RCs. Analogue 3b increased proteoglycan production in both GC and RC cultures. Both analogues stimulated PKC in GC cells; however, neither 3a nor 3b had an effect on PKC activity in RC cells. 1,25-(OH)2D3 and 3a decreased PKC in matrix vesicles from GC cultures, whereas plasma membrane PKC activity was increased, with 1,25-(OH)2D3 having a greater effect. 24,25-(OH)2D3 caused a significant decrease in PKC activity in matrix vesicles from RC cultures; 24,25-(OH)2D3, 3a, and 3b increased PKC activity in the plasma membrane fraction, however. Thus, with little or no binding to calf thymus VDR, 3a and 3b can affect cell proliferation, proteoglycan production, and PKC activity. The direct membrane effect is analogue-specific and cell maturation-dependent. By studying analogues with greatly reduced affinity for the VDR, we have provided further evidence for the existence of a membrane receptor(s) involved in mediating nongenomic effects of vitamin D metabolites.  相似文献   

20.
BACKGROUND: Blacks have been found to have lower amounts of coronary calcium as well as higher levels of the osteoregulatory steroid 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] than whites. We sought to determine if racial differences in coronary calcium mass could be explained by differences in serum levels of 1,25(OH)2D3. METHODS AND RESULTS: We evaluated standard coronary risk factors, quantified coronary calcium mass with electron-beam computed tomography (EBCT), and measured serum 1,25(OH)2D3 with radioimmunoassay in 283 high-risk subjects (51 [180%] black, 232 [82%] white). Black subjects had lower masses of coronary calcium than whites (14 versus 47 mg; P=.003). Serum 1,25(OH)2D3 levels were slightly higher in blacks (41 versus 38 pg/mL; P=.05). Log 1,25(OH)2D3 levels were inversely proportional to log-transformed calcium mass (r=-.19; P=.001) in both races. Multivariate linear regression demonstrated that both black race (P=.02) and 1,25(OH)2D3 levels (P=.007) contributed inversely and independently to coronary calcium mass. However, an interaction term of racex1,25(OH)2D3 did not significantly contribute to coronary calcium mass, indicating that other undetermined factors in addition to 1,25(OH)2D3 are responsible for ethnic differences in coronary calcium mass. CONCLUSIONS: Both black race and serum levels of 1,25(OH)2D3 are independent negative determinants of coronary calcium mass. Nevertheless, diminished amounts of coronary calcium in blacks are not accounted for by higher 1,25(OH)2D3 levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号