首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 176 毫秒
1.
使用电压稳定剂能有效提高交联聚乙烯(XLPE)材料的耐电树枝性能,有利于提高XLPE绝缘高压电缆的使用寿命和电压等级。为了研究电压稳定剂对XLPE交流绝缘性能的影响,选取光稳定剂UV–531、光引发剂ITX、苯偶酰和茴香偶酰4种芳香族化合物作为电压稳定剂,熔融共混到聚乙烯中制成含有电压稳定剂的XLPE材料,以纯XLPE为参照,测试了不同电压稳定剂对XLPE的电树枝起始电压、电树枝生长特性、交流击穿强度、相对介电常数和介质损耗特性的影响。结果表明:添加茴香偶酰能使XLPE的电树枝起始电压提高49%,同时能抑制电树枝的生长;4种电压稳定剂均能提高XLPE的交流击穿强度,以ITX和UV–531效果最优,分别使击穿强度提高了9.4%和8.6%;加入电压稳定剂会使XLPE的相对介电常数和介质损耗因数增大,但除ITX以外的3种电压稳定剂对XLPE的介电性能影响较小,不影响材料工频电压下的使用。  相似文献   

2.
以氯化聚乙烯改性交联聚乙烯作为直流电缆绝缘的研究   总被引:6,自引:0,他引:6  
以少量氯化聚乙烯(CPE)改性交联聚乙烯(XLPE),用电声脉冲法测量了试样中的空间电荷分布,研究了CPE含量与空间电荷的关系,确定了降低空间电荷的最佳含量,研究了CPE对试样直流预压短路树枝起始电压的影响,当CPE含量为1%时,XLPE的50%直流预压短路树枝起始电压决定直流电压的极性,分别可提高42.3%和35.5%。最后作者还测量了试样的其他介电性能,计算了空间电荷畸变的电场强度,分析和讨论了相关的机理。  相似文献   

3.
为研究热处理对聚乙烯(PE)中水树枝老化特性的影响,选用低密度聚乙烯(LDPE)、过氧化物交联聚乙烯(XLPE)作为试验材料,采用热循环和热冲击两种方法对试样进行处理。用水针电极法培养水树枝,用金相显微镜观测水树枝形态,并统计水树枝尺寸和引发率;同时测试试样的力学性能,观测结晶形态,测定XLPE的交联度。结果表明:热处理后,LDPE的力学性能变化不大,XLPE的力学性能明显下降;LDPE的晶块尺寸变小且趋于均匀化,XLPE的晶块尺寸变大且趋于不均匀化;LDPE和XLPE中水树枝都容易发展,XLPE水树枝的老化特性受热处理影响更大。热处理导致材料中微孔聚集、力学性能下降,是造成热处理后材料抗水树枝化性能下降的主要原因。  相似文献   

4.
EAA改性XLPE中空间电荷和电树、水树的关系   总被引:24,自引:11,他引:13  
以不同含量的EAA(乙烯-丙烯酸共聚物)改性XLPE(交联聚乙烯),用电声脉冲法测量了样品中的空间电荷分布。探讨了试样中空间电荷分布与EAA含量的关系,找到了抑制空间电荷的最佳含量。同时测出了在直流预压电压下短路电树枝的起始电压。对交流电压下抑制水树枝的产生和成长了做了研究。试验发现:当试样中含EAA为1.0%wt时,聚乙烯的直流预压短路树枝的起始电压得到提高;交流电压下树枝的出现概率和水树枝长度都减小。  相似文献   

5.
随着聚合物绝缘电力电缆电压等级的逐步提升,人们对聚合物绝缘材料的耐电性能提出更为严苛的要求。添加电压稳定剂是提高聚乙烯(PE)和交联聚乙烯(XLPE)绝缘材料耐电性能的重要方法之一,该方法具有丰富的使用经验和较好的价格优势,且新技术的不断涌现为电压稳定剂的研究提供了更多可能性。该文结合电树枝引发机制的相关研究成果,将电压稳定剂归纳为耐受局部放电及缓和强电场的电压稳定剂、俘获高能电子的电压稳定剂和电树枝引发陷阱理论相关电压稳定剂三大类,并分类阐述了其发展历程和作用机制。最后总结了电压稳定剂的研究难点和研究方向,提出电压稳定剂的大分子化、用理论化学计算方法研究电压稳定剂的作用机制以及电压稳定剂和纳米颗粒相结合是近期国内外主要的研究方向,而探究电压稳定剂在直流电缆绝缘中的应用可行性是目前亟待解决的实际问题。  相似文献   

6.
本文通过对交联聚乙烯电性能的研究所表明:酚酞对交联聚乙烯体系具有良好的改性作用。能缓和由于交联而引起的缺核现象,提高交联聚乙烯的50%树枝起始电压,在相同条件下使交联聚乙烯的50%树枝起始电压提高了32%,并能阻滞树枝的生长,同时使体系的电气强度也明显提高,而对体系的体积电阻率(ρ_v)影响不大,并从结晶形态的角度对实验结果进行了分析。  相似文献   

7.
温度对聚乙烯水树枝老化特性的影响   总被引:2,自引:2,他引:0  
为研究温度对PE水树枝老化特性的影响,选用低密度聚乙烯(LDPE)、过氧化物(DCP)交联聚乙烯(XLPE)作为试验材料。在室温(20°C)、40°C、60°C、80°C 4个温度下,采用水针电极法培养水树枝,用金相显微镜观测水树枝形态,并统计水树枝尺寸和引发率。研究发现,在60°C以上,温度对PE水树枝老化特性影响显著;水树枝的引发率随温度的升高先减小后增大;水树枝的尺寸随温度的升高总体呈现增大的趋势;LDPE和XLPE的试验得到类似的结果,但XLPE的抗水树枝老化性能优于LDPE。同时研究发现,随温度的升高,材料的力学性能大幅下降。经分析认为,交联限制大晶块的形成,使材料的力学性能增强,是XLPE抗水树枝化性能优于LDPE的两个主要原因;高温下两种材料力学性能下降、微孔膨胀、水分和盐离子的加速扩散是高温下水树枝劣化加速的主要原因。  相似文献   

8.
为研究芳香族化合物(aromatic compounds,ACs)添加剂含量对交联聚乙烯(cross-linked polyethylene,XLPE)绝缘电树枝劣化与局部放电特性的影响,制备了含有不同含量ACs添加剂的XLPE绝缘,探究了其在交流电压下电树枝生长形貌与局部放电特性。研究结果表明:ACs添加剂减弱了XLPE绝缘局部放电强度,抑制电树枝生长速率,增强绝缘耐电树性能,提升工频击穿场强;但过高的含量会使XLPE绝缘耐电树特性和击穿场强均出现下降趋势。基于密度泛函理论计算了ACs添加剂的静电势分布与激发态能级,表明此类添加剂利用局部放电产生的紫外波段能量引发夺氢反应,促进绝缘低密度区内的聚乙烯分子链进行再交联反应,形成网状分子链结构,阻止绝缘低密度区扩大,进而抑制绝缘电树枝劣化。  相似文献   

9.
酚酞对交联聚乙烯的改性作用   总被引:1,自引:0,他引:1  
本文通过对交联聚乙烯性能的研究所表明:酚酞对交联聚乙烯体系具有良好的改性作用。能缓和由于交联而引起的缺核现象,提高交联聚乙烯的505树枝起始电压,在相同条件下使交联聚乙烯的50%树枝起始电压提高32%,并能阻滞树枝的生长,同时使体系的电气强度也明显提高,而对体系的体积电阻率(pv)影响不大,并从结晶形态的角度对实验结果进行了分析。  相似文献   

10.
由于交联聚乙烯(XLPE)主绝缘较低的导热系数与海水较低的温度,极易在海底电缆绝缘内形成较大的温度梯度,温度梯度的形成将导致XLPE聚集态及介电特性的径向差异,从而影响电树枝劣化过程。为掌握温度梯度下XLPE的电树枝特性,搭建了10~90℃内的温度梯度电树枝实验平台,测量了不同温度梯度下XLPE的电树枝起始及生长特性。结果表明:不同温度梯度下的针尖电场变化及XLPE聚集态改变会影响电树枝的起始电压,且随着温度梯度的增大,电树枝的主形态呈现出藤枝状、丛林-藤枝混合状及丛林状之间的渐变特性。  相似文献   

11.
为了研究高温环境下电压稳定剂对交联聚乙烯电树枝化及局部放电特性的影响,该文制备了含质量分数为1%的电压稳定剂的交联聚乙烯(XLPE)共混试样,通过设计的高温环境下电树枝实时观察与局部放电同步测量系统,研究不同试样在30℃、50℃和70℃下电树枝的引发、生长及其局部放电特性。结果表明,试样在高温下引发的电树枝呈现典型的枝状结构。随着温度的升高,试样起树电压降低,电树枝生长速度加快,分枝数量减少,局部放电量和放电重复率显著增大。电压稳定剂的添加对电树枝的引发、生长和局部放电有明显的抑制作用。利用陷阱理论和量子化学计算,研究发现电压稳定剂的加入使得试样内部陷阱能级降低,陷阱密度增加,因其特有的量子化学特性,高能电子缓冲能力增强,空间电荷积累减少,从而使得交联聚乙烯材料的耐电性能得到提升。  相似文献   

12.
实际XPLE电缆模型下升压速度对电树枝生长特性的影响   总被引:3,自引:1,他引:2  
电树枝化是影响交联聚乙烯(XLPE)电力电缆运行安全与寿命的技术瓶颈。笔者采用金属针缺陷模拟电缆中集中的电场应力,研究了在工频交流电压下(50 Hz),不同实验起始升压速度(0.1 kV/s,1 kV/s)对XLPE电缆中电树枝生长特性的影响。结果表明,在高的升压速度下电树枝起始快,同时电树枝形态会由纯枝状变为稠密枝状,分形维变大。  相似文献   

13.
热处理对聚乙烯形态及其电树起始电压的影响   总被引:1,自引:0,他引:1  
本文主要介绍了不同的热处理条件对聚乙烯(PE)薄膜材料电树的起始电压的影响,电树的起始电压很大程度上取决于半结晶高分子材料的变形结构。对低密度聚乙烯、线性低密度聚乙烯、高密度聚乙烯三种薄膜试样进行了测量。结果表明,重结晶处理后,试样的结晶度以及球晶以部晶层厚度明显提高,但是试样中球晶的尺寸却基本没有变化,同时还发现,经过重结晶后,电树的起始电压升高了,试验结果还表明,电树的起始电压是随着晶层厚度的增加而增加的。  相似文献   

14.
为提高交联聚乙烯(XLPE)的抗水树枝性能,分别将片层状纳米蒙脱土(MMT)、球型纳米二氧化硅(SiO2)和极性乙烯-醋酸乙烯共聚物(EVA)与XLPE熔融共混,制备出3种改性XLPE材料,并对其进行加速水树枝老化试验。结果表明:纯XLPE试样的水树枝生长长度较长且分形复杂,而添加纳米颗粒和极性共聚物的改性试样,其水树枝生长长度减小且分形维数降低,表明改性试样具有较好的抑制水树枝的能力;水树枝老化后,纯XLPE试样和改性XLPE试样水树区的羰基指数均高于非水树区,说明水树枝老化是电化学降解的作用;改性试样水树枝老化后,水树区的结晶度低于非水树区,结晶能力变差。  相似文献   

15.
通过添加不同含量的乙烯 -丙烯酸共聚物 (EAA)改善了聚乙烯 (PE)的电气性能。用电声脉冲法测量了样品中的空间电荷分布。测出了在直流预压电压下的短路电树枝的起始电压。对交流电压下抑制水树枝的产生和成长也做了研究。试验发现 ,不同EAA含量的试样中空间电荷的累积、短路 50 %电树枝的起始电压以及水树枝的形成有一定关系。空间电荷的测量可作为衡量改善试样耐电树枝和水树枝能力的手段  相似文献   

16.
该文研究了4-正丙基苯甲酸电压稳定剂及其含量对高压直流用500kV交联聚乙烯(XLPE)电缆材料绝缘性能的影响。采用500kV XLPE直流电缆料,通过溶液共混法和热压法制备电压稳定剂含量分别为0%、1%、3%和5%的XLPE试样,对试样进行了空间电荷、直流电导率、直流击穿、介电性能、机械性能和差示扫描量热实验。结果表明:添加4-正丙基苯甲酸电压稳定剂可以有效抑制XLPE试样中空间电荷的积累,减小材料的直流电导率并提高其绝缘寿命指数,且电压稳定剂含量为1%时XLPE试样的直流击穿场强和寿命指数最大;随着电压稳定剂含量的增加,试样的直流击穿场强先增大后减小,相对介电常数和介质损耗逐渐增加,且频率对材料相对介电常数作用更加明显;试样的机械性能和结晶度呈现出相反的变化趋势。量子化学计算表明,电压稳定剂具有正电子亲和能和较窄的分子带隙,电压稳定剂分子极性较大,添加后有利于在试样内部引入陷阱,从而有效提升了电缆绝缘材料的电气性能。  相似文献   

17.
为了进一步提高交联聚乙烯(XLPE)的电气性能,该文选用间氨基苯甲酸作为电压稳定剂,用溶液法制备了质量分数为1%的XLPE共混物试样,并对试样进行加速热老化实验.利用空间电荷、电导率和表面电位衰减测量,研究了添加电压稳定剂和热老化前后材料的电气性能.通过试样在添加电压稳定剂与老化前后的电场和陷阱能级分布,分析了电压稳定剂以及热老化对试样内部陷阱的影响.结果表明,间氨基苯甲酸能够有效抑制XLPE中的空间电荷积聚,改善试样内部电场分布,同时降低试样的直流电导率.热老化后,试样内部出现了明显的空间电荷积聚,电场畸变明显,表面电位衰减速率下降,直流电导率有明显上升.由此可知,电压稳定剂的添加导致试样内部深陷阱和浅陷阱密度的增加,提高了电荷注入的势垒.热老化使陷阱密度下降,深陷阱加深,导致材料中空间电荷积聚,电场畸变明显,从而降低了材料的电气性能.  相似文献   

18.
氯化聚乙烯共混对聚乙烯的空间电荷效应的影响   总被引:2,自引:0,他引:2  
在直流电场作用下 ,用电声脉冲法测量了低密度聚乙烯 (LDPE)中空间电荷的分布 ,计算结果表明 ,异极性空间电荷严重畸变试样中的电场的分布。以少量氯化聚乙烯 (CPE)混入低密度聚乙烯中 ,大大降低了试样中的空间电荷 ,电场分布趋向均匀。在正负极性直流预压短路树枝试验中 ,分别提高试样短路树枝起始电压 2 6 8%和 36 3%。通过直流预压和电晕电荷注入后 ,短路过程中空间电荷分布的测量 ,提出氯化聚乙烯的作用机理在于降低了聚乙烯中陷阱的深度和密度。  相似文献   

19.
三元乙丙橡胶(ethylene propylene diene monomer,EPDM)增强绝缘作为高压电缆附件中的关键部件,其电树枝化和绝缘界面沿面放电问题严重。为改善EPDM本体和绝缘界面的耐电性能,采用4种电压稳定剂对EPDM进行改性,系统地研究电压稳定剂对EPDM交流耐电树枝性能和交、直流击穿强度的影响,探究电压稳定剂的抗迁出性以及电压稳定剂对压力下EPDM直流击穿强度和沿面击穿电压的影响。结果表明,4种电压稳定剂均能提高EPDM的交流电树枝起始电压,并抑制电树枝生长;电压稳定剂对EPDM交流击穿强度改善的作用有限,但均能提高EPDM的直流击穿强度;该文所选电压稳定剂能参与交联反应并接枝在EPDM大分子上,因此具有良好的抗迁出性;随着外施压力的增大,EPDM直流击穿强度先增大、后减小,且高压力下电压稳定剂作用效果有所削弱。沿面击穿实验结果表明,4种电压稳定剂对于EPDM表面击穿电压有提高作用,且对EPDM-交联聚乙烯绝缘界面击穿电压的改善效果更加显著。  相似文献   

20.
本文所选择的电压稳定剂能够有效地提高低密度聚乙烯电树枝起始电压,并能延长其在准均匀电场下的绝缘寿命。红外光谱的结果表明它影响聚乙烯的结晶峰的形状和位置。文章最后从化学的角度讨论了在电老化中自由基清除剂的反应机理。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号