首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
The maize lesion mimic gene Les22 is defined by dominant mutations and characterized by the production of minute necrotic spots on leaves in a developmentally specified and light-dependent manner. Phenotypically, Les22 lesions resemble those that are triggered during a hypersensitive disease resistance response of plants to pathogens. We have cloned Les22 by using a Mutator-tagging technique. It encodes uroporphyrinogen decarboxylase (UROD), a key enzyme in the biosynthetic pathway of chlorophyll and heme in plants. Urod mutations in humans are also dominant and cause the metabolic disorder porphyria, which manifests itself as light-induced skin morbidity resulting from an excessive accumulation of photoexcitable uroporphyrin. The phenotypic and genetic similarities between porphyria and Les22 along with our observation that Les22 is also associated with an accumulation of uroporphyrin revealed what appears to be a case of natural porphyria in plants.  相似文献   

6.
Wild-type rabbitpox virus (RPV) produces red hemorrhagic pocks on the chorioallantoic membranes (CAMs) of embryonated chicken eggs. Like the crmA (SPI-2) gene of cowpox virus, disruption of the RPV ps/hr gene results in a mutant which produces white pocks on the CAMs. An examination of the properties of the RPV(ps/hr) mutant in cell culture also reveals a significantly reduced host range, defined as the inability to form plaques, compared with wild-type virus. One of several cell types on which RPV(ps/hr) mutants fail to produce plaques is chicken embryo fibroblasts, cells which have been traditionally used to propagate spontaneously arising white pock mutants isolated from CAMs. The inability of the RPV(ps/hr) mutant to form plaques in chicken embryo fibroblasts correlates with a failure of a low multiplicity of infection to spread to neighboring cells and to form extracellular enveloped virus (EEV), although the formation and yields of infectious intracellular naked virus appear relatively normal. The gene product of the ps/hr gene, initially synthesized as a 45-kDa glycoprotein, is found as a component of EEV, but not intracellular naked virus, and as a smaller, secreted soluble protein of 35 kDa. Production of the secreted 35-kDa protein was found to be independent of any viral morphogenesis, suggesting two distinct pathways for release of the ps/hr gene product from the cell, i.e., as a component of the EEV particle and as a separately secreted glycoprotein.  相似文献   

7.
Fibronectin (FN) is an extracellular matrix protein that connects the extracellular matrix to intracellular cortical actin filaments through binding to its cell surface receptor, alpha5beta1, a member of the integrin superfamily. The expression level of FN is reduced in most tumor cells, facilitating their anchorage-independent growth by still unclarified mechanisms. The cDNA clone encoding G-rich sequence binding protein G10BP-1, which is responsible for repression of the rat FN gene, was isolated by using a yeast one-hybrid screen with the G10 stretch inserted upstream of the HIS3 and lacZ gene minimal promoters. G10BP-1 comprises 385 amino acids and contains two basic regions and a putative zipper structure. It has the same specificity of binding to three G-rich sequences in the FN promoter and the same size as the G10BP previously identified in adenovirus E1A- and E1B-transformed rat cells. Expression of G10BP-1 is cell cycle regulated; the level was almost undetectable in quiescent rat 3Y1 cells but increased steeply after growth stimulation by serum, reaching a maximum in late G1. Expression of FN mRNA is inversely correlated with G10BP-1 expression, and the level decreased steeply during G1-to-S progression. This down regulation was strictly dependent on the downstream GC box (GCd), and base substitutions within GCd abolished the sensitivity of the promoter to G10BP-1. In contrast, the level of Sp1, which competes with G10BP for binding to the G-rich sequences, was constant throughout the cell cycle, suggesting that the concentration of G10BP-1 relative to that of Sp1 determines the expression level of the FN gene. Preparation of glutathione S-transferase pulldowns of native proteins from the cell extracts containing exogenously or endogenously expressed G10BP-1, followed by Western blot analysis, showed that G10BP-1 forms homodimers through its basic-zipper structure.  相似文献   

8.
9.
10.
11.
Ethambutol [EMB; dextro-2,2'-(ethylenediimino)-di-1-butanol] is an effective drug when used in combination with isoniazid for the treatment of tuberculosis. It inhibits the polymerization of arabinan in the arabinogalactan and lipoarabinomannan of the mycobacterial cell wall. Recent studies have shown that arabinosyltransferases could be targets of EMB. These enzymes are encoded by the emb locus that was identified in Mycobacterium smegmatis, Mycobacterium leprae, Mycobacterium avium, and Mycobacterium tuberculosis. We demonstrate that a missense mutation in the M. smegmatis embB gene, one of the genes of the emb locus, confers resistance to EMB. The level of resistance is not dependent on the number of copies of the mutated embB gene, indicating that this is a true mechanism of resistance. The mutation is located in a region of the EmbB protein that is highly conserved among the different mycobacterial species. We also identified in this region two other independent mutations that confer EMB resistance. Furthermore, mutations have recently been described in the same region of the EmbB protein from clinical EMB-resistant M. tuberculosis isolates. Together, these data strongly suggest that one of the mechanisms of resistance to EMB consists of missense mutations in a particular region of the EmbB protein that could be directly involved in the interaction with the EMB molecule.  相似文献   

12.
The gene III product (P15) of cauliflower mosaic virus (CaMV) is a DNA binding protein in which the DNA binding activity is located on its C-terminal part. In previous work, a C-terminal processed form of P15 (P11) was detected in purified viral particles as a minor component. The full-length P15 was shown to be present and to be matured, possibly by a cysteine proteinase, in CaMV replication complexes isolated from infected turnip leaves. In this paper, we have shown that a virion-enriched fraction obtained from such replication complexes by size exclusion chromatography contained most of the P15 in its uncleaved form and was enriched in the activity responsible for its proteolysis. This enabled us to characterize better the proteinase activity (temperature and pH optimum; effect of specific inhibitors) responsible for P15 cleavage and to confirm that it corresponds to a cysteine proteinase. Based upon these observations, a purification procedure for CaMV particles was devised which impaired the cleavage of P15 into P11 and allowed the isolation of virions containing almost exclusively the noncleaved form. This finding supports our hypothesis that the CaMV gene III product could be involved in the folding of the viral genome during encapsidation.  相似文献   

13.
The S1 genome segment of reovirus is linked to type specificity as determined by neutralization antibody. This gene segment codes for a minor outer capsid polypeptide (sigma1). Therefore, sigma1 is the peptide responsible for induction of neutralization antibody and confers type specificity. This biologic property of reovirus was defined using hybrid recombinants clones between reovirus types 1 and 3 and 2 and 3.  相似文献   

14.
The classical disruption method for yeast genes is by using in vitro deletion of the gene of interest, or of a part of it, with restriction enzymes. We are now routinely using a strategy that takes advantage of polymerase chain reactions (PCRs) which amplify large pieces of DNA. Since this approach results in a complete, precise deletion of the open reading frame, which is replaced by a unique restriction site, the ligated PCR can be used for the insertion of different markers or for two-step gene disruptions without an inserted marker. As we have now used this strategy for the deletion of more than ten genes we have in this report included some hints based on our experience.  相似文献   

15.
16.
17.
18.
Fentanyl and its derivatives are considered among the most potent opiate analgesic/euphoriants. The pharmacological literature generally supports a mu opiate receptor site of action for the fentanyl derivatives, but some observations suggest that other sites of action may be involved in producing the extremely potent fentanyl effects. In order to investigate the mechanism of action of fentanyl-like drugs further, [3H]carfentanil was used as a radioligand to image high-affinity carfentanil binding sites in slidemounted sections of the rat brain (receptor autoradiography). In parallel studies the prototypical mu opiate agonist radioligand [3H]DAMGO ([D-Ala2-MePhe4-Gly-ol5]enkephalin) was also used. The working hypothesis was that if carfentanil was acting through another high-affinity site besides the mu opiate receptor, the distribution pattern of the autoradiographic image produced by [3H]carfentanil should be significantly different than the autoradiographic pattern displayed by the well-characterized and selective mu opiate [3H]DAMGO. Thirty-five brain regions were examined for specific [3H]carfentanil and [3H]DAMGO binding. The absolute and relative densities of the sites were essentially identical. The highest levels of binding were observed in the "patch" areas of the striatum (131 +/- 5 fmol/mg T.E. for [3H]carfentanil; 162 +/- 13 fmol/mg T.E. for [3H]DAMGO). The lowest levels were observed in the cerebellum where no specific binding of either radioligand was observed. The overall distribution pattern of the two radioligands produced a correlation coefficient of 0.95; the distribution pattern was prototypical for the mu opiate receptor as reported previously by other groups.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
20.
Several bloom-forming cyanobacterial genera produce potent inhibitors of eukaryotic protein phosphatases called microcystins. Microcystins are hepatotoxic cyclic heptapeptides and are presumed to be synthesized non-ribosomally by peptide synthetases. We identified putative peptide synthetase genes in the microcystin-producing strain Microcystis aeruginosa PCC 7806. Non-hepatotoxic strains of M. aeruginosa lack these genes. Strain PCC 7806 was transformed to chloramphenicol resistance. The antibiotic resistance cassette insertionally inactivated a peptide synthetase gene of strain PCC 7806 as revealed by Southern hybridization and DNA amplification. This is the first report of genetic transformation and mutation, by homologous recombination, of a bloom-forming cyanobacterium. Chemical and enzymatic analyses, including high-performance liquid chromatography (HPLC), mass spectrometry, amino acid activation, and protein phosphatase inhibition, revealed the inability of derived mutant cells to produce any variant of microcystin while maintaining their ability to synthesize other small peptides. The disrupted gene therefore encodes a peptide synthetase (microcystin synthetase) that is specifically involved in the biosynthesis of microcystins. Our results confirm that microcystins are synthesized non-ribosomally and that a basic difference between toxic and non-toxic strains of M. aeruginosa is the presence of one or more genes coding for microcystin synthetases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号