首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
2.
Endothelin (ET)-1 reduced heparin-releasable lipoprotein lipase (LPL) activity in 3T3-L1 adipocytes in a concentration-dependent manner. However, a selective ETB receptor agonist, [Ala1,3,11,15]ET-1, did not act like ET-1. The ET-1-induced decrease in LPL activity was suppressed by a selective ETA receptor antagonist, BQ-123: the concentration-response curve for the ET-1 reduction of LPL activity was shifted to the right in the presence of BQ-123 in a concentration-dependent manner. This antagonistic effect of BQ-123 clarifies that the ETA receptor is responsible for the ET-1-induced reduction of LPL activity in 3T3-L1 adipocytes, which suggests that there is therapeutic potential for ETA antagonists in LPL-related lipoprotein disorders.  相似文献   

3.
1,25-dihydroxyvitamin D3 [1,25-(OH)2D3] is known to modulate the development of bone and other mesenchymal cell types. Since osteoblasts and adipocytes are thought to arise in bone marrow from a common progenitor, this work examined the effects of 1,25-(OH)2D3 on adipocyte development, and in particular on the expression of lipoprotein lipase (LPL), which is an early marker for the differentiated adipocyte. 3T3-L1 preadipocytes were cultured in the presence of 1,25-(OH)2D3 (10(-9) to 10(-7) M) for up to 7 days. LPL activity was measured in the medium and cell extracts, and LPL messenger RNA levels were measured by Northern blotting. When compared to control cells, 10(-7) M 1,25-(OH)2D3 increased medium LPL activity by 2- to 3-fold and cellular LPL by 1.5-fold. Significant increases in medium and cellular LPL were observed at 10(-9) M and were maximal at 10(-7) M. Along with the increase in LPL activity, there was an increase in LPL messenger RNA by 2-fold at 5 days, and by 5-fold at 7 days. In addition to an increase in LPL, 1,25-(OH)2D3 increased expression of aP2, an adipocyte-specific marker associated with differentiation. After the addition of 1,25-(OH)2D3, there was a decrease in 3T3-L1 cell number, which is consistent with differentiation, and a decrease in vitamin D receptors. Finally, these cells developed a different morphology. 1,25-(OH)2D3-treated cells assumed a rounded appearance, although without detachment from the dish and without the degree of lipid accumulation usually associated with the addition of insulin, isbutylmethylxanthine, and dexamethasone. It is concluded that 1,25-(OH)2D3 induced LPL expression in 3T3-L1 cells through an induction of differentiation-dependent mechanism(s). These findings suggest an important role for 1,25-(OH)2D3 in normal adipocyte differentiation.  相似文献   

4.
Thiazolidinediones (TZDs) are known to have potent increases of insulin sensitivity. Because peroxisome proliferator-activated receptor-gamma (PPAR-gamma), a receptor for TZDs, is mainly expressed in adipocytes, we tried to search the TZD-targeted genes in mouse 3T3-L1 adipocytes. By the mRNA differential display method, one band repressed by troglitazone was obtained, which corresponded to the partial sequences of the stearoyl-CoA desaturase 1 (SCD1) gene. Troglitazone dramatically decreased SCD1 mRNA levels in 3T3-L1 adipocytes in a dose-dependent manner. Pioglitazone also repressed the SCD1 mRNA expression, whereas WY-14,643 had no apparent effect. Both troglitazone and pioglitazone raised the composition (weight percentage) of myristic acid (C14:0), palmitic acid (C16:0), and stearic acid (C18:0), but lowered the composition of the delta9-cis desaturated fatty acids such as myristoleic acid (C14:1, delta9), palmitoleic acid (C16:1, delta9), oleic acid (C18:1, delta9), and linoleic acid (C18:2, delta9,12). These results indicate that TZDs repress SCD1 activity in 3T3-L1 adipocytes via downregulating SCD1 enzyme gene expression.  相似文献   

5.
Elevated glucose transport rates during glucose deprivation are phenomena that have been observed in several different types of cells in culture. We show here that glucose transport rates in 3T3-L1 adipocytes increased by 10-fold within 18 h in response to glucose deprivation, confirming earlier work by Van Putten and Krans (Van Putten, J. P. M., and Krans, H. M. J. (1985) J. Biol. Chem. 260, 7996-8001). Mannose and 3-O-methylglucose (a nonmetabolizable glucose analog), but not fructose or galactose, blocked the increase in transport activity. Although the increase in transport was dependent on new protein synthesis, only a small and transient increase in GLUT 1 mRNA (less than 2-fold) was observed. In addition, the level of the normal isoform of GLUT 1 (46 kDa) did not increase. A lower molecular mass isoform (37 kDa) was observed but not until 15 h after glucose removal, the appearance of which was clearly not correlated with the increase in activity. Further, the extracellular glucose concentration required to elicit accumulation of this form (p37) was 2 orders of magnitude less than that required for transport stimulation (5 microM versus 500 microM glucose; p37 accumulation and transport activation, respectively). Interestingly, p37 was seen in the presence of galactose, but not fructose, despite elevated transport activity with either sugar. The p37 isoform was slightly larger than N-glycosidase F-treated GLUT 1 (36 kDa), implying that this form is still glycosylated, albeit incompletely. It is not known if p37 is functional, but the time- and sugar-dependent appearance of the lower isoform suggests that p37 is not responsible for starvation-induced transport but potentially represents an underglycosylated precursor of the normal, 46-kDa isoform of GLUT 1.  相似文献   

6.
Metabolic labeling and immunoprecipitation were used to analyze the glucose-dependent regulation of GLUT1 synthesis, processing, and turnover in a murine adipocyte cell line. Metabolically labeled GLUT1 from control cells migrated as a 46-kDa protein, while GLUT1 from cells deprived of glucose for more than 12 h migrated as a 37-kDa protein. On the basis of tunicamycin sensitivity, both GLUT1 species arose from a common protein migrating at 36 kDa. In addition, the rate of synthesis of GLUT1 in control and glucose-deprived cells was similar. In short pulse-chase experiments, we distinguished two species arising from the core GLUT1 protein in control cells; an intermediate and the mature 46-kDa species. In contrast, only one glycoform, the 37-kDa species, arose from the core protein in glucose-deprived cells, which was not further processed in either the presence or absence of glucose. Although 12-18 h of glucose deprivation were required to affect GLUT1 glycosylation, glucose-deprived cells quickly recovered the ability to correctly glycosylate GLUT1 upon the readdition of glucose (t1/2 < 1 h). GLUT1 in control adipocytes exhibited a half-life of approximately 14 h, while that in glucose-deprived adipocytes was greater than 50 h. This effect was readily reversed upon the readdition of glucose. In total, these data show that glucose deprivation alters both the processing (glycosylation) and turnover (degradation) of GLUT1. These results are discussed in light of transport function.  相似文献   

7.
Glucosamine, which enters the hexosamine pathway downstream of the rate-limiting step, has been routinely used to mimic the insulin resistance caused by high glucose and insulin. We investigated the effect of glucosamine on insulin-stimulated glucose transport in 3T3-L1 adipocytes. The Delta-insulin (insulin-stimulated minus basal) value for 2-deoxyglucose uptake was dramatically inhibited with increasing concentrations of glucosamine with an ED50 of 1.95 mM. Subcellular fractionation experiments demonstrated that reduction in insulin-stimulated 2-deoxyglucose uptake by glucosamine was due to an inhibition of translocation of both Glut 1 and Glut 4 from the low density microsomes (LDM) to the plasma membrane. Analysis of the insulin signaling cascade revealed that glucosamine impaired insulin receptor autophosphorylation, insulin receptor substrate (IRS-1) phosphorylation, IRS-1-associated PI 3-kinase activity in the LDM, and AKT-1 activation by insulin. Measurement of intracellular ATP demonstrated that the effects of glucosamine were highly correlated with its ability to reduce ATP levels. Reduction of intracellular ATP using azide inhibited Glut 1 and Glut 4 translocation from the LDM to the plasma membrane, insulin receptor autophosphorylation, and IRS-1 tyrosine phosphorylation. Additionally, both the reduction in intracellular ATP and the effects on insulin action caused by glucosamine could be prevented by the addition of inosine, which served as an alternative energy source in the medium. We conclude that direct administration of glucosamine can rapidly lower cellular ATP levels and affect insulin action in fat cells by mechanisms independent of increased intracellular UDP-N-acetylhexosamines and that increased metabolism of glucose via the hexosamine pathway may not represent the mechanism of glucose toxicity in fat cells.  相似文献   

8.
The cytokine tumor necrosis factor-alpha (TNFalpha) contributes to metabolic changes in disease states such as insulin resistance. However, the mechanism by which TNFalpha alters cellular function in these conditions is poorly understood. Because changes in intracellular calcium concentration plays a critical role in hormone action we investigated the effect of TNFalpha on calcium homeostasis in 3T3-L1 adipocytes. In these studies we show that TNFalpha causes a concentration- and time-dependent decrease in Na+/myo-inositol cotransporter (SMIT) mRNA levels and myo-inositol accumulation as well as a decrease in myo-inositol incorporation into phosphoinositides. These changes coincided with a decrease in endothelin-1-induced phosphatidylinositol (PI) cycle activity in 3T3-L1 adipocytes chronically exposed to TNFalpha. Endothelin-1-induced mobilization of calcium from intracellular stores was also diminished by TNFalpha. The effect of TNFalpha on endothelin-1-induced PI cycle activity and calcium mobilization was not due to a decrease in endothelin receptors. However, TNFalpha did cause a moderate decrease in phosphatidylinositol 4,5-bisphosphate (PIP2)-specific phospholipase C (PLC) activity in 3T3-L1 adipocytes. Combined, a decrease in phosphoinositide production and PIP2-specific PLC activity could be responsible for altering PI cycle activity and the generation of the second messenger myo-inositol 1,4,5-trisphosphate, thereby reducing calcium mobilization. Such changes in intracellular signaling may contribute to the pathophysiology of insulin resistance associated with TNFalpha.  相似文献   

9.
The thiazolidinediones troglitazone and BRL 49653 improve insulin sensitivity in humans and animals with insulin resistance. Adipose tissue lipoprotein lipase is an insulin-sensitive enzyme. We examined the effects of thiazolidinediones on lipoprotein lipase expression in adipocytes. When added to 3T3-F442A, 3T3-L1, and rat adipocytes in culture, troglitazone and BRL 49653 inhibited lipoprotein lipase activity. This inhibition was observed at concentrations as low as 0.1 microM and within 2 h after addition of the drug. Lipoprotein lipase activity was inhibited in differentiated adipocytes as well as the differentiating cells. Despite this decrease in enzyme activity, these drugs increased mRNA levels in undifferentiated 3T3-F442A and 3T3-L1 cells and had no effect on mRNA expression or synthesis of lipoprotein lipase in differentiated cells. Western blot analysis showed that these drugs did not affect the mass of the enzyme protein. Lipoprotein lipase activity in cultured Chinese hamster ovary cells was not inhibited by troglitazone. Glucose transport, biosynthesis of lipids from glucose or the biosynthesis of proteins were unaffected by thiazolidinediones in differentiated cells, whereas glucose transport and lipid biosynthesis were increased when these drugs were added during differentiation. These results show that troglitazone and BRL 49653 have a specific, post-translational inhibitory effect on lipoprotein lipase in adipocytes, yet they promote lipid accumulation and differentiation in preadipocytes.  相似文献   

10.
Phospholipase D has been implicated as an important enzyme in a range of cellular responses, including regulated secretion and the formation of secretory vesicles, cell proliferation and control of cell morphology. As insulin treatment of adipocytes has been shown to stimulate a phosphatidylcholine-specific phospholipase D and also modulates membrane trafficking, we wished to determine which isoform(s) of phospholipase D were present within adipocytes, to identify their subcellular distribution, and examine how this distribution may change in response to insulin. Using RT-PCR, 3T3-L1 adipocytes were found to express two isoforms of phospholipase D, specifically PLD1b and PLD2a. Using isoform-specific antibodies, PLD1 and PLD2 were found to be present predominantly in intracellular membranes, unlike the situation reported in other cells. Detailed analysis of the intracellular localisation of PLD1 and PLD2 revealed that these isoforms are differentially localised within adipocytes, implying functionally distinct roles for PLD activity in distinct subcellular compartments.  相似文献   

11.
This report examines the effect of polyunsaturated fatty acids (PUFA) on lipogenic gene expression in cultured 3T3-L1 adipocytes. Arachidonic acid (20:4, n-6) and eicosapentaenoic acid (20:5, n-3) suppressed mRNAs encoding fatty acid synthase (FAS) and S14, but had no effect on beta-actin. Using a clonal adipocyte cell line containing a stably integrated S14CAT fusion gene, oleic acid (18:1, n-9), arachidonic acid (20:4, n-6) and eicosapentaenoic acid (20:5, n-3) inhibited chloramphenicol acetyltransferase (CAT) activity with an ED50 of 800, 50, and 400 microM, respectively. Given the high potency of 20:4, n-6, its effect on adipocyte gene expression was characterized. Arachidonic acid suppressed basal CAT activity, but did not affect glucocorticoid-mediated induction of S14CAT expression. The effect of 20:4, n-6 on S14CAT expression was blocked by an inhibitor of cyclooxygenase implicating involvement of prostanoids. Prostaglandins (PGE2 and PGF2alpha at 10 microM) inhibited CAT activity through a pertussis toxin-sensitive Gi/Go-coupled signalling cascade. Our results suggest that 20:4, n-6 inhibits lipogenic gene expression in 3T3-L1 adipocytes through a prostanoid pathway. This mechanism of control differs from the polyunsaturated fatty acid-mediated suppression of hepatic lipogenic gene expression.  相似文献   

12.
The protein product of the c-Cbl proto-oncogene is prominently tyrosine phosphorylated in response to insulin in 3T3-L1 adipocytes and not in 3T3-L1 fibroblasts. After insulin-dependent tyrosine phosphorylation, c-Cbl specifically associates with endogenous c-Crk and Fyn. These results suggest a role for tyrosine-phosphorylated c-Cbl in 3T3-L1 adipocyte activation by insulin. A yeast two-hybrid cDNA library prepared from fully differentiated 3T3-L1 adipocytes was screened with full-length c-Cbl as the target protein in an attempt to identify adipose-specific signaling proteins that interact with c-Cbl and potentially are involved in its tyrosine phosphorylation in 3T3-L1 adipocytes. Here we describe the isolation and the characterization of a novel protein that we termed CAP for c-Cbl-associated protein. CAP contains a unique structure with three adjacent Src homology 3 (SH3) domains in the C terminus and a region showing significant sequence similarity with the peptide hormone sorbin. Both CAP mRNA and proteins are expressed predominately in 3T3-L1 adipocytes and not in 3T3-L1 fibroblasts. CAP associates with c-Cbl in 3T3-L1 adipocytes independently of insulin stimulation in vivo and in vitro in an SH3-domain-mediated manner. Furthermore, we detected the association of CAP with the insulin receptor. Insulin stimulation resulted in the dissociation of CAP from the insulin receptor. Taken together, these data suggest that CAP represents a novel c-Cbl binding protein in 3T3-L1 adipocytes likely to participate in insulin signaling.  相似文献   

13.
Insulin induces the translocation of vesicles containing the glucose transporter GLUT4 from an intracellular compartment to the plasma membrane in adipocytes. SNARE proteins have been implicated in the docking and fusion of these vesicles with the cell membrane. The role of Munc18c, previously identified as an n-Sec1/Munc18 homolog in 3T3-L1 adipocytes, in insulin-regulated GLUT4 trafficking has now been investigated in 3T3-L1 adipocytes. In these cells, Munc18c was predominantly associated with syntaxin4, although it bound both syntaxin2 and syntaxin4 to similar extents in vitro. In addition, SNAP-23, an adipocyte homolog of SNAP-25, associated with both syntaxins 2 and 4 in 3T3-L1 adipocytes. Overexpression of Munc18c in 3T3-L1 adipocytes by adenovirus-mediated gene transfer resulted in inhibition of insulin-stimulated glucose transport in a virus dose-dependent manner (maximal effect, approximately 50%) as well as in inhibition of sorbitol-induced glucose transport (by approximately 35%), which is mediated by a pathway different from that used by insulin. In contrast, Munc18b, which is also expressed in adipocytes but which did not bind to syntaxin4, had no effect on glucose transport. Furthermore, overexpression of Munc18c resulted in inhibition of insulin-induced translocation of GLUT4, but not of that of GLUT1, to the plasma membrane. These results suggest that Munc18c is involved in the insulin-dependent trafficking of GLUT4 from the intracellular storage compartment to the plasma membrane in 3T3-L1 adipocytes by modulating the formation of a SNARE complex that includes syntaxin4.  相似文献   

14.
Exposure of adipocytes to arachidonic acid rapidly enhanced basal 2-deoxyglucose uptake, reaching maximal effect at approximately 8 hr. Insulin-stimulated 2-deoxyglucose uptake was not altered over the experimental period. While the short-term (2-h exposure) effect of arachidonic acid was negligibly influenced by cycloheximide, the enhancement of glucose transport by long-term (8-h) exposure to arachidonic acid was markedly decreased by the simultaneous presence of protein-synthesis inhibitors, implying that the short-term and long-term effects of arachidonic acid may involve distinct mechanisms. Immunoblot analysis revealed that 8-h but not 2-h exposure to arachidonic acid increased the content of the ubiquitous glucose transporter (GLUT1) in both total cellular and plasma membranes. The insulin-responsive glucose transporter (GLUT4), on the other hand, was not affected. Following 2-h exposure to arachidonic acid, kinetic studies indicated that the apparent Vmax of basal 2-deoxyglucose uptake was more than doubled, while the apparent Km for 2-deoxyglucose remained unchanged. Protein kinase C (PKC) depletion by pretreating cells with 4 beta-phorbol 12 beta-myristate 13 alpha-acetate (PMA) for 24 h had little influence on the subsequent enhancing effect of arachidonic acid on 2-deoxyglucose uptake. In addition, PMA was able to stimulate 2-deoxyglucose uptake in arachidonic-acid-pretreated cells with similar increments as in non-treated cells. Thus, our data seem to suggest that arachidonic acid may enhance the intrinsic activity of GLUT1 by a PKC-independent mechanism.  相似文献   

15.
The targeting of the insulin-responsive glucose transporter, GLUT-4, to an intracellular compartment in adipocytes and muscle is one of the key features responsible for the unique insulin sensitivity of this transporter. Through expression of epitope-tagged GLUT-4 mutants in 3T3-L1 adipocytes, two motifs have been identified as playing a central role in GLUT-4 targeting: FQQI in the amino terminus and a di-leucine motif in the carboxy terminus. The goal of this study was to explore the role of these targeting motifs in the intracellular sorting of GLUT-4 using the Tf-HRP ablation technique. This technique provides a quantitative assessment of the amount of GLUT-4 located in recycling endosomes. In basal adipocytes, we find that approximately 40% of GLUT-4 is ablated following Tf-HRP loading. In contrast, here we demonstrate that the intracellular pool of a mutant in which F5 was mutated to A5 is localized to the recycling endosomal pathway, suggesting that the amino terminal FQQI motif functions in trafficking GLUT-4 from early endosomes. In contrast, GLUT-4 in which L489L490 was mutated to A489A490 was localized predominantly to a nonablated compartment. These data imply a role for the di-leucine motif in sorting from a separate intracellular compartment, such as the TGN. Our findings are discussed within the context of a revised multicompartment model for GLUT-4 trafficking in adipocytes, in which mutations in either the FQQI or LL motifs result in the altered subcellular trafficking of GLUT-4 between multiple intracellular compartments.  相似文献   

16.
17.
Phosphoinositide (PI) 3-kinase contributes to a wide variety of biological actions, including insulin stimulation of glucose transport in adipocytes. Both Akt (protein kinase B), a serine-threonine kinase with a pleckstrin homology domain, and atypical isoforms of protein kinase C (PKCzeta and PKClambda) have been implicated as downstream effectors of PI 3-kinase. Endogenous or transfected PKClambda in 3T3-L1 adipocytes or CHO cells has now been shown to be activated by insulin in a manner sensitive to inhibitors of PI 3-kinase (wortmannin and a dominant negative mutant of PI 3-kinase). Overexpression of kinase-deficient mutants of PKClambda (lambdaKD or lambdaDeltaNKD), achieved with the use of adenovirus-mediated gene transfer, resulted in inhibition of insulin activation of PKClambda, indicating that these mutants exert dominant negative effects. Insulin-stimulated glucose uptake and translocation of the glucose transporter GLUT4 to the plasma membrane, but not growth hormone- or hyperosmolarity-induced glucose uptake, were inhibited by lambdaKD or lambdaDeltaNKD in a dose-dependent manner. The maximal inhibition of insulin-induced glucose uptake achieved by the dominant negative mutants of PKClambda was approximately 50 to 60%. These mutants did not inhibit insulin-induced activation of Akt. A PKClambda mutant that lacks the pseudosubstrate domain (lambdaDeltaPD) exhibited markedly increased kinase activity relative to that of the wild-type enzyme, and expression of lambdaDeltaPD in quiescent 3T3-L1 adipocytes resulted in the stimulation of glucose uptake and translocation of GLUT4 but not in the activation of Akt. Furthermore, overexpression of an Akt mutant in which the phosphorylation sites targeted by growth factors are replaced by alanine resulted in inhibition of insulin-induced activation of Akt but not of PKClambda. These results suggest that insulin-elicited signals that pass through PI 3-kinase subsequently diverge into at least two independent pathways, an Akt pathway and a PKClambda pathway, and that the latter pathway contributes, at least in part, to insulin stimulation of glucose uptake in 3T3-L1 adipocytes.  相似文献   

18.
In this study we analyzed photosensitizing and photodamaging properties of the hydrophobic meso-tetraphenylporphyrin (TPP, incorporated into liposomes) on HeLa cells. Under the fluorescence microscope, red fluorescence by TPP was detected on the cell surface. TPP followed by violet-blue or red irradiation led to cell death, blebs and plasma membrane deformations appearing immediately after photodynamic treatment. Production of singlet oxygen by TPP was studied by analyzing tryptophan photodegradation, which increased in the presence of D2O and was abolished by NaN3. Present results suggest that the plasma membrane is the main cellular target for TPP, which could be a valuable photosensitizing drug in studies on photodynamic therapy of cancer.  相似文献   

19.
20.
Phospholipase C-gamma (PLCgamma) is the isozyme of PLC phosphorylated by multiple tyrosine kinases including epidermal growth factor, platelet-derived growth factor, nerve growth factor receptors, and nonreceptor tyrosine kinases. In this paper, we present evidence for the association of the insulin receptor (IR) with PLCgamma. Precipitation of the IR with glutathione S-transferase fusion proteins derived from PLCgamma and coimmunoprecipitation of the IR and PLCgamma were observed in 3T3-L1 adipocytes. To determine the functional significance of the interaction of PLCgamma and the IR, we used a specific inhibitor of PLC, U73122, or microinjection of SH2 domain glutathione S-transferase fusion proteins derived from PLCgamma to block insulin-stimulated GLUT4 translocation. We demonstrate inhibition of 2-deoxyglucose uptake in isolated primary rat adipocytes and 3T3-L1 adipocytes pretreated with U73122. Antilipolytic effect of insulin in 3T3-L1 adipocytes is unaffected by U73122. U73122 selectively inhibits mitogen-activated protein kinase, leaving the Akt and p70 S6 kinase pathways unperturbed. We conclude that PLCgamma is an active participant in metabolic and perhaps mitogenic signaling by the insulin receptor in 3T3-L1 adipocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号