首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The anisotropy of a granular material’s structure will influence its response to applied loads and deformations. Anisotropy can be either inherent (e.g. due to depositional process) or induced as a consequence of the applied stresses or strains. Discrete element simulations allow the interactions between individual particles to be explicitly simulated and the fabric can be quantified using a fabric tensor. The eigenvalues of this fabric tensor then give a measure of the anisotropy of the fabric. The coordination number is a particle scale scalar measure of the packing density of the material. The current study examines the evolution of the fabric of a granular material subject to cyclic loading, using two-dimensional discrete element method (DEM) simulations. Isotropic consolidation modifies and reduces the inherent anisotropy, but anisotropic consolidation can accentuate anisotropy. The ratio of the normal to shear spring stiffness at the particle contacts in the DEM model affects the evolution of anisotropy. Higher ratios reduce the degree of anisotropy induced by anisotropic consolidation. The anisotropy induced by cyclic loading depends on the amplitude of the loading cycles and the initial anisotropy.  相似文献   

3.
The mechanical behaviors of granular media are controlled by grain properties and microstructure. The primary property of granular media is denoted by its grain shape, grain size distribution, stiffness, and interparticle friction. The grain shape itself is of particular importance. Microstructures are formed in the connection paths of contact points between grains. In this paper, the deformation of granular materials with different grain shapes was simulated using two-dimensional DEM under different stress-levels and densities. After analyzing the results, the authors investigated fabric changes. The evolution rule of stress-induced anisotropy and its limitation as well as the existence of a critical state of fabric are revealed.  相似文献   

4.
This paper aims to investigate the evolutions of microscopic structures of elliptical particle assemblies in both monotonic and cyclic constant volume simple shear tests using the discrete element method. Microscopic structures, such as particle orientations, contact normals and contact forces, were obtained from the simulations. Elliptical particles with the same aspect ratio (1.4 and 1.7 respectively for the two specimens) were generated with random particle directions, compacted in layers, and then precompressed to a low pressure one-dimensionally to produce an inherently anisotropic specimen. The specimens were sheared in two perpendicular directions (shear mode I and II) in a strain-rate controlled way so that the effects of inherent anisotropy can be examined. The anisotropy of particle orientation increases and the principal direction of particle orientation rotates with the shearing of the specimen in the monotonic tests. The shear mode can affect the way fabric anisotropy rate of particle orientation responds to shear strain as a result of the initial anisotropy. The particle aspect ratio exhibits quantitative influence on some fabric rates, including particle orientation, contact normal and sliding contact normal. The fabric rates of contact normal, sliding contact normal, contact force, strong and weak contact forces fluctuate dramatically around zero after the shear strain exceeds 4 % in the monotonic tests and throughout the cyclic tests. Fabric rates of contact normals and forces are much larger than that of particle orientation. The particle orientation based fabric tensor is harder to evolve than the contact normal or contact force based because the reorientation of particles is more difficult than that of contacts.  相似文献   

5.
Soil fabric anisotropy tensors are related to the statistical distribution of orientation of different microstructural vector-like entities, most common being the contact normal vectors between particles, which are extremely difficult to determine for real granular materials. On the other hand, void fabric based tensors can be determined by image based quantification methods of voids (graphical approaches), which are well defined and easy to apply to both physical and numerical experiments. A promising void fabric characterization approach is based on the scan line method. Existing scan line based definitions of void fabric anisotropy tensors are shown analytically to inherit a shortcoming, since numerous small void segments in a sample have an inordinate contribution towards unwarranted isotropy. Discrete Element Method (DEM) of analysis subsequently confirms this analytical proof. The fact that such scan line void fabric tensor definitions yield acceptable results when used in conjunction with physical image-based measurements, is shown to be attributed to the natural “cut off” of smaller void segments that occurs during such measurements. This is the motivation to propose using the existing definition of void fabric tensors, with exclusion of void segments less than a “cut off” value associated with an internal length of the granular assembly. In addition, an entirely new void fabric tensor was introduced using the squared length, instead of the length of a void segment, as the weighting factor for the definition of the scan line void fabric tensor. It was found by means of DEM analysis that both alternative definitions are void of the aforementioned shortcoming and compatible with existing image quantification methods of void fabric anisotropy.  相似文献   

6.
This paper presents the micromechanical behavior of granular materials due to different initial inherent anisotropic conditions during cyclic loading using the discrete element method (DEM). Oval particles were used to model the samples. Three samples, with three different inherent anisotropic conditions based on the particle’s bedding direction, were prepared and subjected to biaxial cyclic loading. The differences in the inherent anisotropic conditions of the samples affect the stress–strain-dilative behavior of granular materials. The width of the stress–strain cyclic loops decreases as the preferred bedding angle changes from vertical to horizontal. Contact fabric evolution is found to be dependent on the inherent anisotropic fabric of the sample during loading and unloading. The fabric anisotropy is dominant for horizontal particle bedding at the end of loading and for vertical particle bedding at the end of unloading. A change in fabric anisotropy is observed only for the first few loading–unloading cycles for the given conditions depicted in the present study.  相似文献   

7.
This paper presents a micro-scale modeling of fabric anisotropy effects on the mechanical behavior of granular assembly under undrained conditions using discrete element method. The initial fabrics of the numerical samples engendered from the deposition under gravity are measured, quantified and compared, where the gravitational field can be applied in different directions to generate varying anisotropy orientations. The samples are sheared under undrained biaxial compression, and identical testing conditions are applied, with samples having nearly the same anisotropy intensities, but with different anisotropy directions. The macroscopic behaviors are discussed for the samples, such as the dilatancy characteristics and responses at the critical state. And the associated microstructure changes are further examined, in terms of the variables in the particulate scale, with the focus on the fabric evolution up to a large deformation reaching the critical state. The numerical analysis results compare reasonably well with available experimental data. It is also observed that at critical state, in addition to the requirements by classical critical state theory, a unique fabric structure has also been developed, and might be independent of its initial fabric. This observation is coincided with the recent theoretical achievement of anisotropic critical state theory. Finally, a general framework is introduced for quantifying and modeling the anisotropy effects.  相似文献   

8.
We propose a micromechanical approach for granular media, with a particular account of the texture-induced anisotropy and of the strain localization rule. The approach is mainly based on the consideration of a fourth order fabric tensor able to capture general anisotropy which can be induced by complex distribution of contacts. Incorporation of this fourth order fabric tensor in a suitable homogenization scheme allows to determine the corresponding macroscopic elastic properties of the granular material. For this purpose, in addition to the classical Voigt upper bound, a new kinematics-based localization rule is proposed. It generalizes the one formulated by Cambou et al. [B. Cambou, Ph. Dubujet, F. Emeriault, F. Sidoroff, Eur. J. Mech. A/Solids 14 (1995) 225–276] in the case of an isotropic contact distribution. The results of the complete model compare well to numerical simulations results when available [C.S. Chang, C.L. Liao, Appl. Mech. Rev. 47 (1 Part 2) (1994) 197–207] (case of isotropic distribution of contacts). Finally, the interest of the fourth order fabric tensor based approach combined with the proposed localization rule is shown for different distributions of contacts by comparing its predictions to those given by a second order fabric tensor approach.  相似文献   

9.
Physical experiments can characterize the elastic response of granular materials in terms of macroscopic state variables, namely volume (packing) fraction and stress, while the microstructure is not accessible and thus neglected. Here, by means of numerical simulations, we analyze dense, frictionless granular assemblies with the final goal to relate the elastic moduli to the fabric state, i.e., to microstructural averaged contact network features as contact number density and anisotropy. The particle samples are first isotropically compressed and then quasi-statically sheared under constant volume (undrained conditions). From various static, relaxed configurations at different shear strains, infinitesimal strain steps are applied to “measure” the effective elastic response; we quantify the strain needed so that no contact and structure rearrangements, i.e. plasticity, happen. Because of the anisotropy induced by shear, volumetric and deviatoric stresses and strains are cross-coupled via a single anisotropy modulus, which is proportional to the product of deviatoric fabric and bulk modulus (i.e., the isotropic fabric). Interestingly, the shear modulus of the material depends also on the actual deviatoric stress state, along with the contact configuration anisotropy. Finally, a constitutive model based on incremental evolution equations for stress and fabric is introduced. By using the previously measured dependence of the stiffness tensor (elastic moduli) on the microstructure, the theory is able to predict with good agreement the evolution of pressure, shear stress and deviatoric fabric (anisotropy) for an independent undrained cyclic shear test, including the response to reversal of strain.  相似文献   

10.
Mechanical behavior of granular soils is a classic research realm but still yet not completely understood as it can be influenced by a large number of factors, including confining pressure, soil density, loading conditions, and anisotropy of soil etc. Traditionally granular materials are macroscopically regarded as continua and their particulate and discrete nature has not been thoroughly considered although many researches indicate the macro mechanical behavior closely depends on the micro-scale characteristics of particles. This paper presents a DEM (discrete element method)-based micromechanical investigation of inter-particle friction effects on the behavior of granular materials. In this study, biaxial DEM simulations are carried out under both ‘drained’ and ‘undrained’ (constant volume) conditions. The numerical experiments employ samples having similar initial isotropic fabric and density, and the same confining pressure, but with different inter-particle friction coefficient. Test results show that the inter-particle friction has a substantial effect on the stress-strain curve, peak strength and dilatancy characteristics of the granular assembly. Clearly, it is noted that apart from the inter-particle friction, the shear resistance is also contributed to the dilation and the particle packing and arrangements. The corresponding microstructure evolutions and variations in contact properties in the particulate level are also elaborated, to interpret the origin of the different macro-scale response due to variations in the inter-particle friction.  相似文献   

11.
12.
13.
Xia Li  Hai-Sui Yu 《Acta Mechanica》2014,225(8):2345-2362
In micromechanics, the stress–force–fabric (SFF) relationship is referred to as an analytical expression linking the stress state of a granular material with microparameters on contact forces and material fabric. This paper employs the SFF relationship and discrete element modelling to investigate the micromechanics of fabric, force and strength anisotropies in two-dimensional granular materials. The development of the SFF relationship is briefly summarized while more attention is placed on the strength anisotropy and deformation non-coaxiality. Due to the presence of initial anisotropy, a granular material demonstrates a different behaviour when the loading direction relative to the direction of the material fabric varies. Specimens may go through various paths to reach the same critical state at which the fabric and force anisotropies are coaxial with the loading direction. The critical state of anisotropic granular material has been found to be independent of the initial fabric. The fabric anisotropy and the force anisotropy approach their critical magnitudes at the critical state. The particle-scale data obtained from discrete element simulations of anisotropic materials show that in monotonic loading, the principal force direction quickly becomes coaxial with the loading direction (i.e. the strain increment direction as applied). However, material fabric directions differ from the loading direction and they only tend to be coaxial at a very large shear strain. The degree of force anisotropy is in general larger than that of fabric anisotropy. In comparison with the limited variation in the degree of force anisotropy with varying loading directions, the fabric anisotropy adapts in a much slower pace and demonstrates wider disparity in the evolution in the magnitude of fabric anisotropy. The difference in the fabric anisotropy evolution has a more significant contribution to strength anisotropy than that of force anisotropy. There are two key parameters that control the degree of deformation non-coaxiality in granular materials subjected to monotonic shearing: the ratio between the degrees of fabric anisotropy and that of force anisotropy and the angle between the principal fabric direction and the applied loading direction.  相似文献   

14.
This paper presents a numerical investigation on the behavior of three dimensional granular materials during continuous rotation of principal stress axes using the discrete element method. A dense specimen has been prepared as a representative element using the deposition method and subjected to stress rotation at different deviatoric stress levels. Significant plastic deformation has been observed despite that the principal stresses are kept constant. This contradicts the classical plasticity theory, but is in agreement with previous laboratory observations on sand and glass beads. Typical deformation characteristics, including volume contraction, deformation non-coaxiality, have been successfully reproduced. After a larger number of rotational cycles, the sample approaches the ultimate state with constant void ratio and follows a periodic strain path. The internal structure anisotropy has been quantified in terms of the contact-based fabric tensor. Rotation of principal stress axes densifies the packing, and leads to the increase in coordination numbers. A cyclic rotation in material anisotropy has been observed. The larger the stress ratio, the structure becomes more anisotropic. A larger fabric trajectory suggests more significant structure re-organization when rotating and explains the occurrence of more significant strain rate. The trajectory of the contact-normal based fabric is not centered in the origin, due to the anisotropy in particle orientation generated during sample generation which is persistent throughout the shearing process. The sample sheared at a lower intermediate principal stress ratio \((b=0.0)\) has been observed to approach a smaller strain trajectory as compared to the case \(b=0.5\), consistent with a smaller fabric trajectory and less significant structural re-organisation. It also experiences less volume contraction with the out-of plane strain component being dilative.  相似文献   

15.
In this paper, we investigate the micromechanical behaviour of Si-based particulate systems subjected to tri-axial compression loading. The investigations are based on three-dimensional discrete element modelling (DEM) and simulations. At first, we compare the variation of mean compressive stress for a silicon assembly subjected to tri-axial compression, predicted at two different scales: at the particulate scale, using the DEM simulation (mono-dispersed particulates) and at the atomistic scale using the molecular dynamics (MD) simulation results for silicon mono-crystal reported by Mylvaganam and Zhang (2003) [K. Mylvaganam, L. Zhang, Key Eng. Mater. 233–236 (2003) 615–620]. Both the simulation methods considered the silicon assembly subjected to an identical (tri-axial) loading condition. We observed a good qualitative agreement between the DEM and MD simulation results for the mean compressive stress when the assembly was subjected to small volumetric strain. However, at large volumetric strain, the mean stress of the silicon assembly predicted from MD simulation did not scale-up with the DEM results. This discrepancy could be due to that MD simulation is only valid for particle contacts, which are independent of one another and does not consider the inherent ‘discrete’ nature of particulates and the induced anisotropy prevailing at particulate scale. The micromechanical behaviour of particulate assemblies strongly depends on the inherent discrete nature of the particles, their single-particle properties and the induced anisotropy during mechanical loading. At the second stage, using DEM, we present the evolution of macroscopic compressive stress and several micromechanical features for four cases of the commonly used Si based poly-dispersed particulate assemblies (Si, SiC,Si3N4 and SiO2) under tri-axial compression loading. We also present the evolution of several other phenomena occurring at particulate scale, such as the energy dissipation characteristics due to sliding contacts and the features of fabric structures developed during mechanical loading. The study shows that the single-particle properties of the Si based assemblies considered here significantly affect the micromechanical behaviour of the assemblies and DEM is a powerful tool to get insights on the internal behaviour of discrete particulates under mechanical loading.  相似文献   

16.
The mechanical behaviors of granular soils at different initial densities and confining pressures in the drained and undrained triaxial tests are investigated micromechanically by three-dimensional discrete element method (DEM). The evolutions of the microstructure in the numerical specimen, including coordination number, contact force and anisotropies of contact normal and contact force, are monitored during the shearing. The typical shear behaviors of granular soils (e.g. strain softening, phase transformation, static liquefaction and critical state behavior) are successfully captured in the DEM simulation. It is found that the anisotropies of contact normal, normal and tangential contact forces comprise the shear resistance and show different evolution features during shearing. After large strain shearing, the microstructure of the soil will finally reach a critical state, although the evolution path depends on the soil density and loading mode. Similar to the macroscopic void ratio $e$ and deviatoric stress $q$ , the coordination number and anisotropies of contact normal and contact force at the critical state also depend on the mean normal effective stress $P^{\prime }$ at the critical state.  相似文献   

17.
The influence of the knit structure on the stiffness and strength in tensile and in share loading of glass warp knitted fabric epoxy composites is studied. The average strength depends on the fibre content and on the linear density of the yarn. The anisotropy in tensile and shear properties is related to the orientation tensor components a1111 and a1122, respectively. By making use of these relationships, a knit structure can be evaluated with regard to the mechanical properties of its composite with only two measurements: (1) measurement of the achievable fibre content; and (2) measurement of the fibre orientations.  相似文献   

18.
This paper presents the results of numerical simulations using the three-dimensional discrete element method (DEM) on the critical state behaviour of isotropically compressed and rebounded assemblies of granular materials. Drained and undrained (constant volume) numerical simulations were carried out. From these numerical simulations of drained and undrained tests, it has been shown that the steady state is same as the critical state. Critical state for both isotropically compressed and rebounded assemblies form unique curved line that can be approximated by a bilinear line as proposed by Been et al. [Géotechnique 41(3): 365–381, 1991]. Further more, evolution of the internal variables such as average coordination number and induced anisotropy coefficients during shear deformation has been studied.  相似文献   

19.
Many experimental studies have demonstrated that mechanical response of granular materials is highly influenced by micro-structural fabric and its evolution. In the current literature, quantification of fabric and its evolution has been developed based on micro-structural observations using Discrete Element Method or 2D experiments with simple particle shapes. The emergence of X-ray computed tomography technique has made quantification of such experimental micro-structural properties possible using 3D high-resolution images. In this paper, synchrotron micro-computed tomography was used to acquire 3D images during in-situ conventional triaxial compression experiments on granular materials with different morphologies. 3D images were processed to quantify fabric and its evolution based on experimental measurements of contact normal vectors between particles. Overall, the directional distribution of contact normals exhibited the highest degree of isotropy at initial state (i.e., zero global axial strain). As compression progressed, contact normals evolved in the direction of loading until reaching a constant fabric when experiments approached the critical state condition. Further assessment of the influence of confining pressure, initial density state, and particle-level morphology on fabric and its evolution was formed. Results show that initial density state and applied confining pressure significantly influence the fabric-induced internal anisotropy of tested specimens at initial states. Relatively, a higher applied confining pressure and a looser initial density state resulted in a higher degree of fabric-induced internal anisotropy. Influence of particle-level morphology was also found to be significant particularly on fabric evolution.  相似文献   

20.
The filling and discharge of a two-dimensional wedged-bottom silo holding circular objects was modelled using DEM technique to examine the influence of method of silo filling on distribution of orientations of unit vectors normal to contact points (contact normals) and normal contact forces. It was found that packing structure determined through method of generation of grain bedding significantly influenced distribution of contact normals. Nearly hexagonal network of contact normals was obtained for central filling of silo while sprinkle filling provided higher anisotropy of contact normals. The significance of frictional conditions and number of particles in system on distribution of contact normals was analysed. Increase in number of grains reduced disturbance from boundaries on behaviour of assembly. Distribution of loads on silo bottom obtained in simulation for different wall roughness was found in qualitative agreement with experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号