共查询到20条相似文献,搜索用时 46 毫秒
1.
LSTM本身具有良好的非线性逼近能力,但在应用于化工流程工业建模时,存在模型泛化能力低的问题。对此,提出一种基于L2正则化LSTM的非线性动态系统辨识策略,将L2正则化项引入网络的损失函数中,优化网络结构,从而提高模型泛化能力。同时,利用TE过程进行相关验证实验,仿真结果表明:所提出的方法优于传统的BP神经网络和支持向量回归,能够有效地提高模型的精度和泛化能力,降低对辨识输入数据的要求。 相似文献
2.
陈思海 《化工自动化及仪表》2011,38(1):37-39
工业大系统中Hammerstein模型的非线性系统,一般都是多输入多输出系统,具有大滞后、大惯性、时变性和强耦合性的特点,它的数学模型难于精确获得;且传统PID控制器无法使控制效果处于最佳状态的局限性.为了更加快速准确控制,使系统更加地稳定工作在最佳工作状态.利用分散辨识方法对Hammerstein模型的非线性系统进行... 相似文献
3.
概述了计算流体力学(CFD)数值模拟和系统辨识的原理,详细阐述了基于CFD数值模拟的系统辨识“灰箱”建模方法的基本原理和实现步骤,对近几年该方法的应用案例进行分析,指出该建模方法存在的问题及发展方向. 相似文献
4.
基于自适应模糊推理的非线性系统辨识器设计 总被引:1,自引:1,他引:1
针对传统模糊建模方法中模型参数都是根据经验选取的局限性,提出一种类高斯隶属函数,推导了基于类高斯隶属函数的自适应模糊推理模型,利用Stone-Weierstrass定理证明了该模型能以任意精度逼近非线性系统.将自适应模糊推理模型应用于非线性动态系统辨识中,设计了非线性系统辨识器,采用梯度下降算法学习模型中参数,通过仿真得到了较好的辨识效果. 相似文献
5.
提出了依据系统输出分布的特征变量选取方法,并提出了依据该项信息的建模和控制方法.仿真结果令人满意.在一个实验性二元精馏塔上用IBM-PC机进行试验亦获成功.简化模型能较好地近似精馏塔的逐板模型,控制策略优于常规PI控制策略. 相似文献
6.
长短时记忆(LSTM)循环神经网络的塑料编织机故障诊断法通过提取振动信号的能量矩,突出信号在时间轴上的分布特征,降低输入模型的向量维度。从多个特征向量构成的样本集中选择80%作为训练样本,训练LSTM循环神经网络模型,并利用剩余样本验证模型的检测精度;以准确率、查准率和查全率作为评价指标,利用多组不同的振动数据样本,对BP神经网络模型、卷积神经网络(CNN)模型和LSTM循环神经网络模型进行比较分析。结果表明:LSTM循环神经网络模型在不同样本中能够同时达到较高的准确率、查准率和查全率,其平均值分别可达95.69%、86.96%、96.89%,证明LSTM循环神经网络能充分学习具有时序特性的故障信息,对塑料编织机的故障诊断具有可行性和有效性。 相似文献
7.
王法正;隋璘;熊伟丽 《化工学报》2025,76(4):1635-1646
实际工业生产中,过程变量间存在的时滞和采样率差异会降低建模质量,使得许多软测量模型无法适用。因此,提出一种基于时间感知模式注意力(time-aware temporal pattern attention,TTPA)机制和长短时记忆网络的软测量建模方法。首先,将高、低采样率对应的数据分别重构为短期和长期信息,采用时间感知模块将输入信息分解并考虑时间间隔特性,针对质量相关信息占比低的问题,设计非递增启发式衰减函数对短期信息进行加权,组合后获得长短期信息集成特征,降低因多采样率产生的数据缺失影响。其次,引入特征优化模块实现特征二维滤波,跨时间步解析多元时间序列中的时滞信息,获取更有效的质量相关特征。最后,搭建了基于TTPA的长短期记忆网络软测量模型。通过工业青霉素发酵过程和脱丁烷塔过程的应用仿真,验证了所提模型的有效性和优越性。 相似文献
8.
9.
针对现有的换热器网络最优综合方法的局限性;采用分级超结构转运模型和物流吸、放热潜力的概念;提出了非等温混合线性约束的换热器网络同步最优综合混合整数非线性规划(MINLP)的改进模型.该模型不仅可以对公用工程费用、换热面积、换热设备台数及物流的匹配选择进行多目标同步优化;而且在线性约束的条件下消除了等温混合的不合理假设;只需求解一次MINLP问题就可得到包括分流情况在内的最优网络结构.算例表明;该模型优于以往的几种同步优化模型. 相似文献
10.
基于泄漏积分型回声状态网络的软测量动态建模方法及应用 总被引:3,自引:3,他引:0
提出一种基于泄漏积分型回声状态网络(LiESN)的软测量动态建模方法,给出LiESN的岭回归离线学习算法与递推最小二乘(RLS)在线学习算法。通过引入正则化系数,岭回归离线学习算法可有效地控制输出权值的幅值,改善ESN的预测性能。RLS在线学习算法能适应大数据集的处理,满足过程建模实时性的需求。将基于LiESN的软测量方法分别用于预测脱丁烷塔底部丁烷组分的含量及计算硫回收装置中尾气的组成,实现对精炼厂相关产品质量的实时监控,并采用模型残差的四图分析对建模性能进行评价。在同等条件下,与基本的ESN网络以及支持向量机(SVM)等软测量建模方法进行了比较,结果表明,所提出的LiESN方法取得了很好的预测性能,计算精度满足工业生产的实际要求。 相似文献
11.
The control system of chemical enterprises is becoming more and more complex, and identifying the controlled object model is the primary task of automatic control and optimization design. In view of the problem that most chemical process identification experiments need to apply test signals to the process, which may lead to production interruption or safety accidents, a long short-term memory(LSTM) nonlinear dynamic model identification algorithm combined with attention mechanism is proposed to adapt to plant time series data with characteristics of high dimension, strong coupling and nonlinearity. Based on LSTM model, the algorithm considers the importance of the input variables to the target variables, pays more attention to the key features that affect the output results in the input sequence, and improves the generalization ability of the LSTM model. The LSTM network model based on the daily operation data of the plant can be used as the digital virtual device of the identified object, and the local linear model can be identified offline on the virtual device by using the designed test data. The identification experiments on Tennessee-Eastman (TE) process verify the effectiveness of this method. 相似文献
12.
13.
软测量仪表是解决化工过程中质量变量难以实时测量的重要手段。软测量仪表的核心问题是软测量建模。阐述了软测量建模与辨识和非线性建模的关系:质量变量和易测变量的动态关系存在于增量之间,辨识模型依赖于增量数据,软测量建模则是依赖于实测变量数据来获取这个动态关系;非线性建模建立了变量间的静态关系,忽略了对象动态特性,而软测量建模要兼顾对动态特性的表征。随着人们对过程特性的认识加深,软测量建模方法不断发展,经历了从机理建模到数据驱动建模,从线性建模到非线性建模,从静态建模到动态建模的过程。详细讨论了软测量建模的发展过程,众多建模方法的优缺点及适用情况和现在建模的热点,最后对软测量建模方法进行了总体展望。 相似文献
14.
On identification of well‐conditioned nonlinear systems: Application to economic model predictive control of nonlinear processes
下载免费PDF全文

Anas Alanqar Helen Durand Panagiotis D. Christofides 《American Institute of Chemical Engineers》2015,61(10):3353-3373
The focus of this work is on economic model predictive control (EMPC) that utilizes well‐conditioned polynomial nonlinear state‐space (PNLSS) models for processes with nonlinear dynamics. Specifically, the article initially addresses the development of a nonlinear system identification technique for a broad class of nonlinear processes which leads to the construction of PNLSS dynamic models which are well‐conditioned over a broad region of process operation in the sense that they can be correctly integrated in real‐time using explicit numerical integration methods via time steps that are significantly larger than the ones required by nonlinear state‐space models identified via existing techniques. Working within the framework of PNLSS models, additional constraints are imposed in the identification procedure to ensure well‐conditioning of the identified nonlinear dynamic models. This development is key because it enables the design of Lyapunov‐based EMPC (LEMPC) systems for nonlinear processes using the well‐conditioned nonlinear models that can be readily implemented in real‐time as the computational burden required to compute the control actions within the process sampling period is reduced. A stability analysis for this LEMPC design is provided that guarantees closed‐loop stability of a process under certain conditions when an LEMPC based on a nonlinear empirical model is used. Finally, a classical chemical reactor example demonstrates both the system identification and LEMPC design techniques, and the significant advantages in terms of computation time reduction in LEMPC calculations when using the nonlinear empirical model. © 2015 American Institute of Chemical Engineers AIChE J, 61: 3353–3373, 2015 相似文献
15.
Ewan Chee Wee Chin Wong Xiaonan Wang 《Frontiers of Chemical Science and Engineering》2022,16(2):237-250
Advanced model-based control strategies,e.g.,model predictive control,can offer superior control of key process variables for multiple-input multiple-output systems.The quality of the system model is critical to controller performance and should adequately describe the process dynamics across its operating range while remaining amenable to fast optimization.This work articulates an integrated system identification procedure for deriving black-box nonlinear continuous-time multiple-input multiple-output system models for nonlinear model predictive control.To showcase this approach,five candidate models for polynomial and interaction features of both output and manipulated variables were trained on simulated data and integrated into a nonlinear model predictive controller for a highly nonlinear continuous stirred tank reactor system.This procedure successfully identified system models that enabled effective control in both servo and regulator problems across wider operating ranges.These controllers also had reasonable per-iteration times of ca.0.1 s.This demonstration of how such system models could be identified for nonlinear model predictive control without prior knowledge of system dynamics opens further possibilities for direct data-driven methodologies for model-based control which,in the face of process uncertainties or modelling limitations,allow rapid and stable control over wider operating ranges. 相似文献
16.
针对间歇过程数据非线性、动态性特征,提出一种基于循环自动编码器(recurrent autoencoder,RAE)的过程故障监测方法。采用长短时记忆(long short-term memory,LSTM)循环神经网络构建自动编码器建立监控模型,相比传统自动编码器,其能有效挖掘时序样本间的动态关联信息。该方法首先利用批次展开与变量展开相结合的三步展开方法将间歇过程数据展开成二维,并通过滑动窗采样得到模型输入序列;然后使用LSTM构建自动编码器,重构输入序列。进一步,利用重构误差构造平方预测误差(squared prediction error, SPE)统计量实现在线监测。最后将所提方法应用于青霉素发酵仿真和重组大肠杆菌发酵过程监测,结果表明,该方法能及时监测到故障,具有较好的监测性能。 相似文献
17.
Anas Alanqar Matthew Ellis Panagiotis D. Christofides 《American Institute of Chemical Engineers》2015,61(3):816-830
Economic model predictive control (EMPC) is a feedback control technique that attempts to tightly integrate economic optimization and feedback control since it is a predictive control scheme that is formulated with an objective function representing the process economics. As its name implies, EMPC requires the availability of a dynamic model to compute its control actions and such a model may be obtained either through application of first principles or through system identification techniques. In industrial practice, it may be difficult in general to obtain an accurate first‐principles model of the process. Motivated by this, in the present work, Lyapunov‐based EMPC (LEMPC) is designed with a linear empirical model that allows for closed‐loop stability guarantees in the context of nonlinear chemical processes. Specifically, when the linear model provides a sufficient degree of accuracy in the region where time varying economically optimal operation is considered, conditions for closed‐loop stability under the LEMPC scheme based on the empirical model are derived. The LEMPC scheme is applied to a chemical process example to demonstrate its closed‐loop stability and performance properties as well as significant computational advantages. © 2014 American Institute of Chemical Engineers AIChE J, 61: 816–830, 2015 相似文献
18.
19.
在常规T-S模糊神经网络的基础上加入动态递归元件,提出了递归T-S模糊模型的神经网络。在系统辨识中采用无监督聚类算法和动态反向传播算法训练该递归神经网络的参数,给出了该递归网络的逼近性证明。辨识效果与常规T-S模糊模型作比较,说明递归T-S模糊模型的神经网络在非线性系统辨识中表现出更好的性能。 相似文献
20.
Kuan-Han Lin John P. Eason Lorenz T. Biegler 《American Institute of Chemical Engineers》2022,68(3):e17537
Hydraulic fracturing has gained increasing attention as it allows the constrained natural gas and crude oil to flow out of low-permeability shale formations and significantly increase production. Perilous operating states of extremely high pressure also raise some safety concerns, requiring us to formulate an appropriate dynamic model, and provide a careful engineering control to ensure safe operating conditions. Moreover, uncertainties due to spatially varying rock properties increase the difficulties in control of the fracturing process. In this work, we formulate a first-principles model by considering the fracture evolution, mass transport of substances in the slurry, changing fluid properties, and the monitored operating pressure on the ground level. Next, we implement nonlinear model predictive control (NMPC) to control the process under a set of final requirements and process constraints. Our results show that the performance of standard NMPC degrades when the rock uncertainty causes the parameter mismatch between the process and the predictive model in the controller. With standard NMPC, designed with a nominal model, the process fails to meet the terminal requirements of fracture geometry, and pressure is violated in one of the parameter mismatch cases. Therefore, we resort to multistage NMPC, which considers uncertainty evolution in a scenario tree with separate control sequences to address constraint violations. We demonstrate that multistage NMPC presents good performance by showing constraint satisfaction whether the uncertain rock parameter realization is time-invariant or time-variant. We also simulate the process with multistage NMPC including different numbers of scenarios and compare their control performance. Our investigation demonstrates that multistage NMPC effectively manages parametric uncertainties attributed to non-homogeneous rock formation, and provides a promising control strategy for the hydraulic fracturing process. 相似文献