首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在移动边缘计算(MEC)密集部署场景中,边缘服务器负载的不确定性容易造成边缘服务器过载,从而导致计算卸载过程中时延和能耗显著增加。针对该问题,该文提出一种多用户计算卸载优化模型和基于深度确定性策略梯度(DDPG)的计算卸载算法。首先,考虑时延和能耗的均衡优化建立效用函数,以最大化系统效用作为优化目标,将计算卸载问题转化为混合整数非线性规划问题。然后,针对该问题状态空间大、动作空间中离散和连续型变量共存,对DDPG深度强化学习算法进行离散化改进,基于此提出一种多用户计算卸载优化方法。最后,使用该方法求解非线性规划问题。仿真实验结果表明,与已有算法相比,所提方法能有效降低边缘服务器过载概率,并具有很好的稳定性。  相似文献   

2.
曾锋  张政  陈志刚 《通信学报》2023,(7):124-135
为了扩大车载边缘网络的覆盖范围及其计算能力,提出了一种适用于空天地融合车载网的计算卸载架构。考虑计算任务的时延和能耗约束,以及空天地融合车载网的频谱、计算和存储约束,将计算卸载决策和资源分配的联合优化问题建模为一个混合整数非线性规划问题。基于强化学习方法,将原问题转换成一个马尔可夫过程,提出了一种深度强化学习算法以求解该问题,所提算法具有较好的收敛性。仿真结果表明,所提算法在任务时延和成功率方面优于其他算法。  相似文献   

3.
李斌  徐天成 《电讯技术》2023,63(12):1894-1901
针对具有依赖关系的计算密集型应用任务面临的卸载决策难题,提出了一种基于优先级的深度优先搜索调度策略。考虑到用户能量受限和移动性,构建了一种联合用户下行能量捕获和上行计算任务卸载的网络模型,并在此基础上建立了端到端优化目标函数。结合任务优先级及时延约束,利用深度强化学习自学习的优势,将任务卸载决策问题建模为马尔科夫模型,并设计了基于任务相关性的Dueling Double DQN(D3QN)算法对问题进行求解。仿真数据表明,所提算法较其他算法能够满足更多用户的时延要求,并能减少9%~10%的任务执行时延。  相似文献   

4.
针对移动边缘计算中的多用户协同任务卸载场景,提出了一种基于深度强化学习的多智能体协同任务卸载算法(Deep Reinforcement Learning-based Multi-agent Collaborative Task Offloading Algorithm,MCTO-DRL)。考虑到用户移动性、协同性、任务动态优先级以及资源受限等问题,构建了一种多用户协同任务卸载的网络模型。在此基础上建立了端到端优化目标函数,并利用马尔可夫决策过程(Markov Decison Processes,MDP)形式化多任务协同卸载问题。利用双向长短期记忆(Bidirectional Long Short-Term Memory,Bi-LSTM)网络提取状态向量动态时序依赖关系的特征信息,结合强化学习方法建立高维状态与动作之间的关系映射,并设计了一种动态优先级协同采样算法,用于提高多智能体的协同性。实验分析表明,在多智能体协同任务卸载场景中,MCTO-DRL算法最优卸载概率达到86%以上,时隙累积奖励较4种基线算法分别提升约20.0%、16.23%、22.0%、9.44%,并能够适应不同复杂性和需求型的卸载任务。  相似文献   

5.
计算卸载作为移动边缘计算的关键技术之一,对于提升移动边缘计算实现节能、降低时延和改善用户体验等方面,起到关键的作用.本文围绕移动边缘计算的计算卸载技术进行分析研究,首先介绍了计算卸载概念和主要特征;并就移动边缘计算的计算卸载实施步骤和计算卸载系统分类进行阐述;然后针对计算卸载关键技术中的3个重点研究问题进行了详细分析;最后,对研究工作进行总结.  相似文献   

6.
随着网络技术的不断发展,基于Fat-Tree的网络拓扑结构分布式网络控制模式逐渐显露出其局限性,软件定义数据中心网络(software-defined data center network,SDCN)技术作为Fat-Tree网络拓扑的改进技术,受到越来越多研究者的关注。首先搭建了一个SDCN中的边缘计算架构和基于移动边缘计算(mobileedge computing,MEC)平台三层服务架构的任务卸载模型,结合移动边缘计算平台的实际应用场景,利用同策略经验回放和熵正则改进传统的深度Q网络(deep Q-leaning network,DQN)算法,优化了MEC平台的任务卸载策略,并设计了实验对基于同策略经验回放和熵正则的改进深度Q网络算法(improved DQN algorithm based on same strategy empirical playback and entropy regularization,RSS2E-DQN)和其他3种算法在负载均衡、能耗、时延、网络使用量几个方面进行对比分析,验证了改进算法在上述4个方面具有更优越的性能。  相似文献   

7.
计算卸载作为移动边缘计算的关键技术之一,对于提升移动边缘计算实现节能、降低时延和改善用户体验等方面,起到关键的作用.本文围绕移动边缘计算的计算卸载技术进行分析研究,首先介绍了计算卸载概念和主要特征;并就移动边缘计算的计算卸载实施步骤和计算卸载系统分类进行阐述;然后针对计算卸载关键技术中的3个重点研究问题进行了详细分析;最后,对研究工作进行总结.  相似文献   

8.

移动边缘计算(MEC)中计算卸载决策可能暴露用户特征,导致用户被锁定。针对此问题,该文提出一种基于Lyapunov优化的隐私感知计算卸载方法。首先,该方法定义卸载任务中的隐私量,并引入隐私限制使各MEC节点上卸载任务的累积隐私量尽可能小;然后,提出假任务机制权衡终端能耗和隐私保护的关系,当系统因隐私限制无法正常执行计算卸载时,在MEC节点生成虚假的卸载任务以降低累积隐私量;最后,建立隐私感知计算卸载模型,并基于Lyapunov优化原理求解。仿真结果表明,基于Lyapunov优化的隐私感知卸载算法(LPOA)能使用户的累积隐私量稳定在0附近,且总卸载频率与不考虑隐私的决策一致,有效保护了用户隐私,同时保持了较低的平均能耗。

  相似文献   

9.
针对移动边缘计算(MEC)中用户的卸载任务及卸载频率可能使用户被攻击者锁定的问题,该文提出一种基于k-匿名的隐私保护计算卸载方法。首先,该方法基于用户间卸载任务及其卸载频率的差异性,提出隐私约束并建立基于卸载频率的隐私保护计算卸载模型;然后,提出基于模拟退火的隐私保护计算卸载算法(PCOSA)求得最优的k-匿名分组结果...  相似文献   

10.
针对移动边缘计算(MEC)中用户的卸载任务及卸载频率可能使用户被攻击者锁定的问题,该文提出一种基于k-匿名的隐私保护计算卸载方法。首先,该方法基于用户间卸载任务及其卸载频率的差异性,提出隐私约束并建立基于卸载频率的隐私保护计算卸载模型;然后,提出基于模拟退火的隐私保护计算卸载算法(PCOSA)求得最优的k-匿名分组结果和组内各任务的隐私约束频率;最后,在卸载过程中改变用户原始卸载频率满足隐私约束,最小化终端能耗。仿真结果表明,PCOSA算法能找出用户所处MEC节点下与用户卸载表现最相近的k个用户形成匿名集,有效保护了所有用户隐私。  相似文献   

11.
图像序列光流计算是图像处理与计算机视觉等领域的重要研究方向.随着深度学习技术的快速发展,以卷积神经网络为代表的深度学习理论与方法成为光流计算技术研究的热点.本文主要对深度学习光流计算技术研究进行综述,首先介绍了有监督学习、无监督学习和半监督学习的光流计算网络模型与训练策略,然后重点阐述并分析了不同网络模型优化方法.针对光流计算模型的评估问题,分别介绍了Middlebury、MPI-Sintel和KITTI等数据库及评价基准,并对不同类型深度学习和传统变分光流模型进行对比与分析.最后,总结了深度学习光流计算技术在模型复杂度与泛化性、光流估计鲁棒性、小样本训练准确性等方面的关键技术问题,并指出了可能的解决方案与研究思路.  相似文献   

12.
图像序列光流计算是图像处理与计算机视觉等领域的重要研究方向.随着深度学习技术的快速发展,以卷积神经网络为代表的深度学习理论与方法成为光流计算技术研究的热点.本文主要对深度学习光流计算技术研究进行综述,首先介绍了有监督学习、无监督学习和半监督学习的光流计算网络模型与训练策略,然后重点阐述并分析了不同网络模型优化方法.针对光流计算模型的评估问题,分别介绍了Middlebury、MPI-Sintel和KITTI等数据库及评价基准,并对不同类型深度学习和传统变分光流模型进行对比与分析.最后,总结了深度学习光流计算技术在模型复杂度与泛化性、光流估计鲁棒性、小样本训练准确性等方面的关键技术问题,并指出了可能的解决方案与研究思路.  相似文献   

13.
殷耀文 《信息技术》2021,(1):121-125
针对传统的物联网边缘计算方法存在计算成本过高,计算时间过长等问题,文中引入了深度强化学习技术,对物联网边缘计算方法进行优化.通过物联网拓扑结构设定物联网边缘计算周期,获取数据上传速度.设计边缘计算执行过程,提升边缘计算资源分配效率.引入深度强化学习技术中的CNN模型实现卷积计算,完成物联网边缘计算的资源分配.至此,实现...  相似文献   

14.
移动边缘计算(Mobile Edge Computing,MEC)将云服务器的计算资源扩展到更靠近用户一侧的网络边缘,使得用户可以将任务卸载到边缘服务器,从而克服原先云计算中将任务卸载到云服务器所带来的高时延问题。首先介绍了移动边缘计算的基本概念、基本框架和应用场景,然后围绕卸载决策、联合资源分配的卸载决策分别从单MEC服务器和多MEC服务器两种场景总结了任务卸载技术的研究现状,最后结合当前MEC卸载技术中存在的不足展望了未来MEC卸载技术的研究。  相似文献   

15.
车载边缘计算卸载技术研究综述   总被引:1,自引:0,他引:1  
刘雷  陈晨  冯杰  肖婷婷  裴庆祺 《电子学报》2021,49(5):861-871
通过将移动边缘计算技术应用在车联网,车载边缘计算技术可为车载用户提供低时延、高带宽、高可靠性的应用服务.首先详细介绍了车载边缘计算卸载技术的背景、意义以及本文的贡献.其次,分别概述了车载边缘计算卸载技术的网络架构、主要挑战以及应用场景.然后,从移动分析、卸载模式、资源协作和管理等多个维度全面综述了车载边缘计算卸载技术的...  相似文献   

16.
罗淡贞 《移动信息》2023,45(2):13-17
随着互联网的发展,智能终端在实践中得到了应用,大量时间敏感的计算机应用在人们的生活中也被广泛使用,如p/虚拟现实、智能家居和汽车互联网等。网络流量的增加将逐渐增大核心网络的压力,管理延迟网络变得越来越困难。目前,云协作计算解决方案是拟议的模型边界,文中提出了一种新的算法来管理边缘云之间基本网络流量的分布和解密,以共享时间和分配来改善边缘处理流程的算法资源,遗传算法用于寻找最佳分解分辨率。实验结果表明,与基线相比,拟议的算法可以提高资源效率并减少云流量边缘,从而减少核心网络拥堵现象。  相似文献   

17.
人工智能已覆盖诸多领域,尤其是在图像处理领域的应用已经十分成熟.作为深度学习典型算法的卷积神经网络在图像处理领域大放异彩,长久以来一直是学术界研究的热点.文章给出了图像处理的概念,简述了卷积神经网络及其在图像处理中所用到的几种典型模型,最后浅谈智能图像处理的未来发展趋势.  相似文献   

18.
计算全息作为一种三维显示手段,能够基于衍射计算实现对目标光场的精确重建,在元宇宙通讯、AR/VR头戴显示、车载抬头显示等方向均有着重要的应用。如何实现高速且高质量的相位全息图生成是计算全息领域发展的关键问题,也是当前该方向的重要研究课题。近年来,深度学习技术的飞跃式发展为上述问题的解决提供了一条新的技术路径。本文介绍了计算全息技术的基本原理及算法分类,综述了近年来所提出的基于深度学习的计算全息解决方案,比较了各类方案的优势与不足,展望了深度学习技术在计算全息领域的发展与挑战。  相似文献   

19.
提出了基于安全管理的边缘计算卸载方案,并基于量子进化算法(QEA)设计了卸载决策方案。该方案保证了用户在边缘计算网络中进行计算卸载的安全性。仿真结果表明,与常规计算卸载方案对比,本方案能在保证计算卸载安全的情况下有效降低整个系统的开销。  相似文献   

20.
随着物联网的发展以及智能设备的普及,视频处理技术已广泛应用于生活中。自动驾驶、产品质检等应用场景对视频处理技术的实时性需求逐步提高,移动边缘计算为计算能力不足和能源受限的设备提供计算资源以执行时延敏感性任务,为实时视频处理提供了新的计算架构。本文搭建了一个视频计算卸载场景,并以视频检测为任务,以系统时延为优化目标,建立了计算卸载模型和马尔可夫决策模型;考虑到计算卸载场景的复杂动态因素,如带宽波动、设备数量、任务大小等,以最小化系统时延为目标,提出了一种基于深度强化学习的计算卸载策略进行求解。实验表明,与其他基线方案相比,该卸载策略能够适应较复杂卸载场景,有效降低系统时延。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号