首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 78 毫秒
1.
主要含铁物料的来源广泛、种类复杂,其固体废物属性难以鉴别。通过对原产国来源明确的天然铁矿的各种元素含量进行准确定量,同时搜集了各种主要含铁的固体废物,进行了元素含量、物相组成、微观形貌、粒度及浸取液pH值特征等方面的对比,最终从超出天然铁矿的元素含量范围特征入手,找到了主要含铁物料的固体废物属性快速鉴别模式。并将该快速鉴别模式,应用于两批“铁矿”样品,分别为高钛、高铝铁矿样品,最终得到鉴别结论。  相似文献   

2.
近年来,以氧化锌富集物名义走私进口含锌废料的情况时有发生。而传统的X射线衍射法(XRD)应对复杂含锌物料的鉴别具有一定的局限性,一些对鉴别有较大帮助的特征物相无法通过X射线衍射图谱进行识别。实验采用外观表征、X射线荧光光谱(XRF)、X射线衍射以及超景深显微分析的综合表征技术,对一批申报品名为“含锌氧化物”的物料进行固体废物属性鉴别。其中X射线荧光光谱可对物料所含元素进行表征,X射线衍射可对其物相进行识别,此外,超景深显微分析可将物相及其细节直观地呈现出来。综合表征的结果表明,样品主要由锌、铜、硅和铝等元素组成,物相组成为氧化锌、硅酸锌和黄铜,样品中存在明显的圆球状、黏连状金属颗粒,局部区域呈现金属颗粒与熔渣夹杂混合的状态。据此综合判定该物料为铜锌合金冶炼过程中回收的粉尘,属于固体废物。  相似文献   

3.
我国锡矿进口量逐年增加且物料属性日趋复杂,采用科学高效的方法对样品属性进行鉴别变得尤为重要。利用X射线荧光光谱(XRF)和X射线衍射(XRD)技术,结合自动矿物分析仪(MLA),对某进口含锡物料进行元素组成与元素含量、物相组成与物相含量、微观形貌分析,对该样品是否为固体废物进行鉴别。结果表明:样品主要含有锡、钨、铁、锰、硅、钙、铝等元素,其中锡含量(质量分数,下同)为25.22%,低于YS/T 339—2011《锡精矿》等级要求;钨含量为20.01%,符合YS/T 231—2015《钨精矿》“钨细泥”等级要求。样品中金属矿物为白钨矿、黑钨矿、锡石及少量钨铁矿、针铁矿,脉石成分为电气石和石英,符合天然锡矿、钨矿的组成特征,未见具有熔炼结构特征的冶炼加工产物。样品来源可能为与废石分离后,又经过破碎、分离、跳汰、脱水、摇床等选矿处理的含钨、锡、铁、锰等多金属的氧化物矿物。根据国家标准GB 34330—2017《固体废物鉴别标准通则》,鉴别样品不属于固体废物。本文方法可为进口含锡物料的固体废物鉴别和海关口岸监管提供技术支持。  相似文献   

4.
随着中国工业的飞速发展,中国铜矿资源短缺使得铜矿及其精矿的对外依存度逐渐提高。正确区分铜矿及其精矿与含铜固体废物,有助于维护国家生产安全及环境安全。本文通过对申报品名为“铜精矿”且外观相似的4批进口含铜物料进行物相分析和元素组成分析,同时查阅相关文献,结合生产工艺开展溯源分析,得出铜精矿与含铜固体废物的鉴别特征。经分析,申请进口的4批含铜物料分别为典型硫化铜矿、含铜污泥、黄渣和铜浮渣。典型铜精矿物相组成为黄铜矿、孔雀石和氧化铜等天然含铜矿物,铜、硫和铁含量较高,铅、砷、锑等有毒元素含量较低。含铜污泥结晶程度较差,含有较高的非金属元素如钙、磷等。铅冶炼含铜固体废物如黄渣、铜浮渣,物相以含砷、锑等元素的化合物为主,且铅、砷、锑等有毒元素含量较高。本文通过X射线衍射法(XRD)和X射线荧光光谱技术(XRF),结合物料产生工艺鉴别铜精矿与含铜固体废物,为加快和提高含铜固体废物的识别率提供可靠的技术支撑。  相似文献   

5.
赵伟  严文勋  封亚辉 《冶金分析》2016,36(10):57-61
在铜精矿、铅精矿和锌精矿的冶炼过程中,产生多种固体废物,例如冰铜渣、阳极炉渣、脱铜炉渣、酸浸渣、锌铜渣。实验针对冶炼精矿过程中产生的固体粉末进行鉴别,首先利用X射线荧光光谱(XRF)对制得的精矿和固体废物粉末中的元素进行半定量分析,得出这些物质的主要元素,然后利用X射线衍射(XRD)技术对粉末中存在的物相进行分析,从而推断出固体粉末的属性。通过精矿与固体废物的比较,完成对固体废物的识别与鉴定。通过实验建立了这3种精矿与5种固体废物的鉴别方法,对进口固体废物的监管提供指导。  相似文献   

6.
李丽  郝雅琼 《冶金分析》2018,38(1):24-28
进行含铁量高的电弧炉烟尘物料的固体废物鉴别时,首先应利用X射线荧光光谱(XRF)确认物料的主要成分及其质量分数、X射线衍射仪(XRD)和矿相显微镜分析物料的主要物相组成等基本理化性质指标;当物料的基本理化性质指标与含铁量高的电弧炉烟尘相同时,再利用矿相显微镜、扫描电子显微镜和激光粒度分析仪分析物料的特征性理化性质指标,包括金属铁和铁氧化物的存在形态、微粒的微观形态和粒度分布,如果至少有一个特征性指标与含铁量高的电弧炉烟尘相同,即可确定物料的产生来源为含铁量高的电弧炉烟尘;最后,根据《固体废物鉴别标准 通则》(GB 34330—2017)得出物料的固体废物鉴别结论。试验研究指出了含铁量高的电弧炉烟尘物料的三大特征性理化性质指标和固体废物鉴别流程,为含铁量高的电弧炉烟尘物料的固体废物鉴别和监管提供参考,对将其堵在国门之外具有重要意义。  相似文献   

7.
含铁物料来源广泛、成分复杂,其中不乏我国限制或禁止进口的固体废物。不法商贩以废充好、掺杂废物等方式进口含铁物料的现象时有发生。这些物料仅从铁含量和外观上很难判别其属性。实验通过分析几种不同来源含铁物料样品的特征和来源,得出进口含铁物料固体废物属性鉴别的方法。其方法主要包括以下5个步骤:(1)考察样品的外观特征,包括样品颜色、状态、手感、气味、能否被磁铁吸附以及显微镜下观察等;(2)分析样品的理化组成,包括X射线荧光光谱(XRF)分析和X射线衍射(XRD)分析以及其他必要的测试分析,分别获得样品的元素组成、元素含量信息和样品的物相组成、物相含量信息等;(3)查证文献资料等,具体是根据以上获得的样品信息,查阅相关的文献资料、调研、咨询专家等,对样品可能产生的来源、工艺进行分析查证;(4)确立样品的来源,即通过以上的考察、分析、查证等,推断并确立样品的来源;(5)判别样品的固体废物属性,根据《固体废物属性鉴别导则》(试行)给出样品是否属于固体废物的判定。如果样品是固体废物,可参照《进口废物管理目录》给出限制类别的判定。根据上述鉴定步骤,对送检的含铁尘泥、浸出渣、磨屑泥和尾矿进行了鉴别,判定这些样品均属于我国目前禁止进口的固体废物。  相似文献   

8.
采用X射线荧光光谱(XRF)、红外光谱(IR)以及偏光显微(PM)分析联用技术对进口铜精矿及其冶炼过程中产生的相关固体废物冰铜渣和阳极炉渣进行鉴别。XRF对元素组成及其大致含量进行表征,IR对其中的脉石矿物物相进行识别,PM对其中的非脉石矿物物相进行识别。3种表征手段的联用,可以对其中的物相进行全面的识别。结果表明,铜精矿、冰铜渣和阳极炉渣的的物相组成基本无交叉。通过物相分析可以准确判定其物相归属,从而实现对铜精矿及其冶炼过程中产生的相关固体废物进行有效鉴别。  相似文献   

9.
湿法炼锌浸出渣和黄钾铁矾渣是湿法炼锌工艺中常见的固体废物,且均为我国禁止进口的固体废物。这两种固体废物中锌含量较高,常冒充锌精矿向我国进口。因此实验针对湿法炼锌浸出渣和黄钾铁矾渣进行鉴别,首先利用X射线荧光光谱仪(XRF)对制得粉末样品中的元素进行分析,结果表明,湿法炼锌浸出渣的主要元素为Fe、Zn,黄钾铁矾渣的主要元素为Fe、S、Zn,且湿法炼锌浸出渣和黄钾铁矾渣中均含有As、Cd、Ga、In、Ag等元素。再利用X射线衍射仪(XRD)对粉末样品中存在的物相进行分析,湿法炼锌浸出渣的主要物相为ZnFe2O4,并含有少量PbSO4、Zn2SiO4、ZnS,黄钾铁矾渣的主要物相为KFe3(SO4)2(OH)6、ZnFe2O4、Zn2SiO4。实验建立的湿法炼锌浸出渣和黄钾铁矾渣的鉴别方法为进口固体废物的监管提供了技术支持。  相似文献   

10.
采用X射线荧光光谱(XRF)半定量法或化学法分析粗制氧化锌中ZnO含量时,如存在Zn、ZnFe2O4等非ZnO物相,结果往往偏高,导致一些禁止进口的固体废物进入我国。为此,实验选取两种粗制氧化锌试样,先采用X射线荧光光谱半定量法测定ZnO含量,然后采用X射线衍射(XRD)分析技术和Rietveld全谱图拟合定量相分析。利用整个衍射空间的散射信息,用多个不同物理含义的模型对实验数字衍射谱进行Rietveld全谱图拟合。拟合过程采用线性最小平方拟合算法不断调节模型中参数,获得与实际谱线吻合的理论谱线(加权图形剩余方差因子Rwp<10%),最后获得试样组成相的含量。采用在粗制氧化锌中分别加入一定量ZnO,按照上述方法进行Rietveld全谱图拟合分析,结果差值小于5.0%。结果表明:方法精修后得到粗制氧化锌中各常见物相的晶体结构参数与已报道的文献非常接近,实现了ZnO相含量的更准确测定,可用于进口粗制氧化锌的检验监管和属性鉴别。  相似文献   

11.
按国别收集我国主要进口铜精矿及铜冶炼渣样品,采用X射线荧光光谱仪(XRF)、X射线衍射仪(XRD)、矿相显微镜、扫描电子显微镜(SEM)等多仪器联用的方法检测铜精矿、铜冶炼渣物相特点,判断两者是否存在显著的差异。结果表明,铜冶炼渣主要物相是硅酸铁,其颗粒表面有分布均匀、大小一致的气孔等外观特征。进口铜精矿的主要物相为硫化铁铜或氧化铜,颗粒表面平滑、不规则的分布一些形态各异的气孔。铜冶炼渣与铜精矿相比在物相及颗粒特征方面有明显的差异,可以作为鉴别依据。按比例在铜精矿中混入铜冶炼渣,制备含有不同含量梯度铜冶炼渣的混合样品11个,用上述4种检测手段进行鉴别,发现X射线荧光光谱仪无法确定样品中是否掺杂铜冶炼渣;电子显微镜、矿相显微镜、X射线衍射光谱仪可鉴别出铜精矿掺杂铜冶炼渣,检出限分别为1%、5%、10%。最终确定铜精矿与铜冶炼渣的物相鉴定方法为应用X射线荧光光谱仪初查,辅以X射线衍射仪、矿相显微镜及扫描电子显微镜找到铜冶炼渣的特征物相和颗粒。鉴别方法的确立达到了从源头堵住入境铜冶炼渣易名铜精矿和铜精矿掺杂铜冶炼渣闯关的目的,为海关监管和资源利用提供了技术支持。  相似文献   

12.
利用X射线荧光光谱(XRF)、X射线衍射光谱(XRD)、矿相显微镜和激光粒度分析等方法,表征了3个进口含铁物料的主要成分及其质量分数、物相组成和粒度分布,结合颜色、粒度等外观特征,以及不同粒度物料所占比例,通过与文献资料或相关产品质量标准相比较的方法,确认出进口含铁物料的可能产生来源,明确该物料是有意识生产的并且其质量满足国家或国际承认标准的产品,还是生产过程中的副产物即废弃物质或残余物,或者是污染控制设施产生的残余物,根据《固体废物鉴别导则》(试行)中的判断原则,得出物料的固体废物综合表征结论。在此所表征的3个含铁物料分别是球团矿、硫酸渣和电炉炼钢高铁烟尘,其中后两者均属于我国禁止进口的固体废物。实验研究为进口含铁物料的固体废物综合表征和监管提供参考,对将含铁固体废物堵在国门之外具有重要意义。  相似文献   

13.
鉴定进口矿渣是否为海关监管的固体废物主要根据行业标准《进口矿渣的鉴定通则》(SN/T 3107-2012)。根据本通则进行外观检查、主要物相等特征分析, 仅满足对常见矿渣样品的初步筛查。对复杂的“非常规”的矿渣样品, 研究表明, 通过增加X射线衍射法与X射线荧光光谱法在样品分析中的应用, 再深入分析铜矿冶炼过程中的反应机理, 对照常见FeO-Fe2O3-SiO2铜熔炼渣体系相图, 同时参考《固体废物属性鉴别案例》, 可实现对复杂矿渣样品是否为固体废物的准确和快速鉴定。  相似文献   

14.
郝雅琼 《冶金分析》2017,37(1):26-33
通过对3个进口含铜物料的固体废物鉴别,得到了进口含铜物料的固体废物鉴别方法,即含铜物料的固体废物鉴别通常包括3步:第1步,确定物料的自然属性,包括利用肉眼进行外观和杂质观察;利用X射线荧光光谱(XRF)进行半定量分析,确认物料的主要成分及其质量分数;利用X射线衍射仪(XRD)和矿相显微镜进行物相组成分析,得到物料的主要物相组成;对于极细粉末类含铜物料,还需要利用扫描电子显微镜(SEM)分析物料的微观形态和粒度分布。第2步,确定物料的产生来源,具体是指根据物料的外观特征和试验结果,通过资料对比、实地调研、专家咨询的方法,判断出物料的产生工艺,最终明确该物料是否有意识生产等信息。第3步,确定物料的固体废物属性,即根据《固体废物鉴别导则》(试行)得出物料的固体废物鉴别结论。在此所鉴别的3个含铜物料固体废物鉴别结论分别是铜冶炼过程中产生的铜渣、含铜电镀污泥、废黄杂铜冶炼中渣/烟灰/二级泥渣的混合物料,均属于我国禁止进口的固体废物。实验研究为进口含铜物料的固体废物鉴别和监管提供参考,对将铜渣、铜电镀污泥、含铜渣/灰/泥混合物料等固体废物堵在国门之外具有重要意义。  相似文献   

15.
赵伟  封亚辉  戴东情 《冶金分析》2015,35(10):49-53
在钢铁的冶炼过程中,主要产生炉渣、除尘灰和氧化皮等固体废物,其中氧化皮是国家规定可以进口的固体废物,炉渣和除尘灰属于不能进口的固体废物。实验针对冶炼钢铁过程中产生的固体粉末进行鉴别,首先利用肉眼和扫描电镜(SEM)对样品进行初步判断,例如炉渣的外观不是正常天然矿物的块状或粉状,而除尘灰颗粒较细、较轻,氧化皮呈鳞片状、有金属光泽。再利用X射线荧光光谱(XRF)对制得粉末中的元素进行分析,炉渣的主要元素为钙、硅、镁和铝,铁的含量极低;而除尘灰中铁的含量很高,同时含有锌和钙;氧化皮的主要元素也是铁。最后利用X射线衍射(XRD)技术对粉末中存在的物相进行分析,从而推断出固体粉末的属性,炉渣中的主要物质是CaO-MgO-Al2O3-SiO2形式存在的配合物;除尘灰中的主要物质是铁的氧化物以及一些氧化锌;氧化皮的主要物质也是铁的氧化物,其中氧化亚铁的含量高。通过实验建立了这3种固体废物的鉴别方法,对进口固体废物的监管提供指导。  相似文献   

16.
因榍石在变质岩中含量太少,晶体光学特征不明显,利用偏光显微镜及X射线衍射(XRD)等鉴定技术不易确定。实验利用扫描电镜/能谱仪检测矿物所含元素的种类,确定各元素的大致含量,根据定性分析结果,调用相应的标准样品数据文件,建立所测样品的文件清单。运用Casino程序和Quanta程序,据所测元素的强度值计算出样品中各元素的质量分数,依据矿物化学式中阴阳离子电价平衡的配比规律,计算出所测样品的化学组成。分析结果表明,所测8个样品中SiO2质量分数在33.36%~34.10%之间,CaO质量分数在25.85%~27.00%之间,(TiO2+Fe2O3+Al2O3+CrO2) 质量分数在39.31%~40.45%之间,与榍石主要化学成分基本一致。实验表明,同一件榍石样品平行测定10次,O、Si、Ca、Ti、Fe元素测定结果的相对标准偏差(RSD)依次为0.23%、0.30%、0.28%、0.26%、1.6%,精密度符合要求;经验证,实验方法的测定结果与电子探针波谱法测定结果相符。  相似文献   

17.
提出了用熔融制样 X射线荧光光谱法测定FeCuNbSiB纳米晶合金炉渣中TFe, CaO,MgO,SiO2,Al2O3,MnO,CuO,Nb2O5和TiO2的方法。讨论了玻璃熔片的制备、混合熔剂和脱模剂的用量、基体的吸收和增强效应校正,以及用人工配制的标准样品绘制校准曲线等问题。在最佳的分析条件下,测定了人工配制的标准样品中TFe,CaO,MgO,SiO2,Al2O3,MnO,CuO,Nb2O5和TiO2的含量,11次测定结果的相对标准偏差小于07%,所得的分析结果与标准样品的标准值相符合。用此方法分析了FeCuNbSiB纳米晶合金炉渣试样,用同一样品在完全相同条件下制备了11个熔片进行测量,其测定结果的相对标准偏差小于30%,所得分析结果与其他方法的测定值相一致。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号