共查询到20条相似文献,搜索用时 15 毫秒
1.
研究静态环境下机器人路径规划问题,并根据老鼠觅食行为提出一种鼠群算法.该算法引入环境因子和经验因子,每次搜索后对路径进行经验因子更新,通过迭代的方式寻找静态环境下机器人最佳路径.同时提出一种禁忌策略,有效地避免了路径死锁问题.理论分析和实验结果表明,该算法能使机器人在有较多障碍的环境下迅速找到一条优化路径,而且安全避碰,与同类算法相比具有一定的优越性. 相似文献
2.
基于量子计算理论和进化理论,提出一种新的量子进化算法---基于实数编码的量子进化算法(RQEA).不同于传统进化算法的单点编码和量子进化算法的量子比特编码,该算法以实数矩形区域表示基因,一条染色体携带多个个体信息.利用量子态叠加和相干机理,通过叠加,变异及自学习来完成进化过程.理论分析证明了算法具有全局收敛性.实验结果表明,该算法在函数优化上具有优异的性能. 相似文献
3.
将动态交通分配实施过程纳入预测控制框架下以满足实时交通诱导的目的,提出一种交通诱导预测控制算法.该算法是在滚动时域基础上进行的,包括实时交通分配、交通流模拟运行及评价以及进化最佳路径3 个重要环节.仿真结果表明,交通诱导预测控制是一种良好的计算机控制方法学,其优化过程预先考虑了目前交通分配对未来路网的影响,因而可有效地防范交通拥堵,实现考虑反馈的路网交通流实时分配优化,同时为出行者提供最佳路径. 相似文献
4.
针对协同设计中任务的执行流程缺乏柔性,不利于分析实际设计过程的现状,提出一种单元调用变迁对与决策变迁相集成的基于对象的扩展Petri网,扩展了Petri网的可达图以适应分析OEPNs模型.采用OEPNs中的过程网和单元网对协同设计过程建模,利用模型中的单元调用变迁对和决策变迁对过程本身和可能状态进行分析.最后与相关的研究工作进行比较并给出了结论. 相似文献
5.
提出一种求解旅行商(TSP)问题的新型分散搜索算法.将蚁群算法(ACO)的构解方法引入分散搜索(SS)算法,在搜索过程中既考虑解的质量,又考虑解的分散性.采用一种将蚁群算法的信息素更新技术与分散搜索的组合机制相结合的新型子集组合成新解的构解机制,同时采用动态更新参考集与临界准则策略来加快收敛速度.实验结果表明,该算法优于其他现有的方法,获得了较好的结果. 相似文献
6.
针对求核算法存在所求得的核与基于正区域的核不一致以及算法的时间和空间复杂度不理想的问题,提出一种新的求核方法,并证明了由该方法所获得的核与基于正区域的核是一致的.利用分布计数基数排序方法设计了一种高效的等价类求解算法,在此基础上给出了快速求核算法.实验表明,所提出的算法是正确而高效的. 相似文献
7.
提出一种针对部分较优微粒进行退火操作的精英退火微粒群算法.在退火操作中,结合Logistic方程的特点设计了一种新的错位调整方式,对当前已知最优区域重点搜索.该算法能增强算法的探索和开发能力,避免计算量过度增加.典型测试函数结果显示,该方法可同时提高算法的搜索速度和搜索精度.将基于该方法的PID控制器应用于发电机电压调节系统(AVR)计算结果表明,该PID控制器可以获得更为满意的控制性能指标. 相似文献
8.
为减少计算复杂度,将具有解决复杂组合优化问题的免疫克隆选择算法应用于求解柔性生产调度问题.首先设计一种有效的抗原和抗体的数据结构,用抗原表示待调度的生产计划,抗体表示高效的柔性生产调度结果;然后着重设计了用于产生高效的柔性生产调度结果的克隆免疫算子;最后运用该模型对一个实际生产系统进行仿真调度决策,实验评估结果验证了算法的正确性和有效性. 相似文献
9.
提出一种新的模糊粒子群优化算法---收敛模糊粒子群优化算法.重点研究了收敛因子的确定和模糊隶属度函数的选择对算法性能的影响.在考虑计算效率的同时,提高了算法的精度.利用4个基准函数测试了收敛模糊粒子群优化算法的性能,并与模糊粒子群优化算法$收敛粒子群优化算法以及基本粒子群优化算法进行了对比.实验结果表明#新算法具有很好的性能. 相似文献
10.
借鉴自然界中的物种迁移机制,提出一类基于物种迁移优化的进化算法.该算法是根据生态系统中物种分布的迁移模型而提出的一种优化算法.参考其他智能算法的思想,通过物种迁移实现信息交换和共享,从而完成进化过程.讨论了物种迁移优化算法的基本原理和实现过程,同时进行一些基准函数的性能测试.实验结果表明所提出的算法是有效的,具有一定的参考和应用价值. 相似文献
11.
针对兼类样本,提出一种类增量学习算法.利用超球支持向量机,对每类样本求得一个能包围该类尽可能多样本的最小超球,使各类样本之间通过超球隔开.增量学习时"对新增样本以及旧样本集中的支持向量和超球附近的非支持向量进行训练,使得算法在很小的空间代价下实现兼类样本类增量学习.分类过程中,根据待分类样本到各超球球心的距离判定其所属类别.实验结果表明,该算法具有较快的训练,分类速度和较高的分类精度. 相似文献
12.
为在环境发生变化后跟踪最优解的变化,提出一种自组织单变量边缘分布算法(SOUMDA)来求解动态优化问题.自组织策略包含扩散和惯性速度模型,扩散模型利用当前环境的局部信息使群体向外扩散,惯性速度模型利用最优解的历史信息进行预测.将自组织策略与单变量边缘分布算法(UMDA)结合,使得算法在环境变化后自适应地增加种群多样性,提高算法适应能力,快速跟踪最优解.利用动态sphere函数对所提出的算法进行测试,并与iUMDA和UMDA算法进行比较,结果表明所设计的算法能快速适应环境的变化,跟踪最优解. 相似文献
13.
提出一种高效的规则提取算法,采用熵测量改进Chi-merge特征区间离散化方法,模糊划分输入空间.先为每个数据生成单条规则,再聚集相同前项的单条规则产生带概率属性的分类规则.提取的规则无需任何调整,应用模糊推理便可获得较理想的分类效果,同时支持增量式规则更新.最后给出了新方法的性能测试结果. 相似文献
14.
在分析传统聚类算法的基础上,提出一种针对混合属性数据的聚类算法.该算法利用格论中简单元组及超级元组将对象属性转化为格模型建立,以对象间格覆盖数来衡量类间相似度,根据高覆盖数高相似度的原则选择聚类中心进行聚类.在公共数据集上的实验结果表明"该算法在不增加空间复杂度的基础上,有效地提高了混合属性数据聚类的质量. 相似文献
15.
针对准则值具有灰色性和随机性两种信息不确定的多准则决策问题,提出一种灰色随机多准则决策方法.通过对灰数与白数比较的定义,将随机支配规则推广到对灰色随机变量型准则值的处理中,得出方案之间的随机支配关系;利用一般性准则对该随机支配关系进行转换,构建出优势矩阵和劣势矩阵,得出每一方案的优势流和劣势流,进而确定出方案的排序.最后通过算例说明了所提出方法的可行性和有效性. 相似文献
16.
适应性粒子群寻优算法Ⅰ(APSO-Ⅰ)是在有序的决策中始终引入随机的,不可预测的决定.为解决APSO-Ⅰ算法收敛深度不够的问题,提出适应性粒子群寻优第Ⅱ代算法(APSO-Ⅱ).APSO-Ⅱ算法是将有序(标准PSO粒子群寻优)和无序(自适应寻优)进行适当的分离,以发挥各自的优势.在自适应寻优阶段,通过在最优粒子邻域空间探寻更优化的解,一但新的优化解被发掘,便利用标准PSO快速寻优.典型复杂函数优化的仿真结果表明,APSO-Ⅱ在收敛速度和收敛深度上均优于DPSO(耗散型PSO),HPSO(自适应层次PSO),AEPSO(自适应逃逸PSO)和APSO-Ⅰ. 相似文献
17.
混沌变异进化算法忽略了混沌规律性,未充分利用知识来提高算法的局部收敛能力.为此,借鉴文化算法的双层进化结构,在文化算法的进化引导函数中引入自适应混沌变异策略,提出一种自适应混沌文化算法.利用进化过程隐含知识控制变异尺度,使知识引导个体能跳出局部较优解,在保证种群多样性的同时,实现进化后期的精细搜索.仿真结果表明,该算法可以有效提高进化收敛速度,具有较好的计算稳定性. 相似文献
18.
采用3种方法研究了LTI(Linear time-invariant)状态空间模型中未知参数的估计问题:利用Metropolis-Hastings算法,从后验分布中抽取一定容量的样本,得出其均值和标准差;采用进化算法来最小化对数似然函数,得到全局最优解;采用模拟退火算法来最大化似然函数,得到全局最优解.最后,通过数值实验验证和比较了3种估计算法的有效性. 相似文献
19.
针对遗传算法收敛速度慢,容易"早熟"等缺点,结合模糊推理,模拟退火算法和自适应机制,提出一种改进的遗传算法---模糊自适应模拟退火遗传算(FASAGA),并分析了该算法的性能和特点.实验研究表明,该算法比标准的遗传算(SGA)具有更快的收敛速度和寻优效果. 相似文献
20.
立体匹配一直是计算机视觉领域的一个中心研究问题.首先综合介绍了立体匹配算法的研究概况,论述了双目立体匹配算法中各种约束的核心概念和适用范围;然后重点归纳分析了立体匹配算法的分类及其发展过程中的各种演化算法,对其关键技术进行了剖析和比较,并总结了目前存在的主要难题和可能的解决途径;最后对该领域存在的问题和技术发展趋势进行了分析和讨论. 相似文献
|