首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 93 毫秒
1.
针对气泡发生器中气泡在上升阶段发生的摆动现象会影响气泡生成效率的问题,利用流体体积函数(VOF)模型模拟了水槽内气泡生成和上升过程,研究了通气速度、气泡孔口直径和水槽高宽比对气泡羽流的影响,探究气泡的摆动特性和偏移程度。结果表明,气泡羽流摆动的最大偏移量与弗劳德数和水槽宽高比呈指数衰变关系;而最大偏移量对应的偏移角度与弗劳德数和水槽宽高比呈多项式关系。根据所得数据拟合得到相关经验关系式,给出了不同弗劳德数和水槽宽高比对应的气泡摆动特性的规律。  相似文献   

2.
赵敬德  叶鸿鑫 《化工进展》2020,39(z2):36-41
相变微胶囊悬浮液在相变过程中具有较大的相变潜热,可以减小温度的变化程度,且比单相流体具有更高的对流换热系数,成为广泛关注的新型热工流体。本文针对相变微胶囊悬浮液在等热流边界条件下的管内层流,根据差示扫描量热法所得到的相变温度范围,采用矩形等效比热容模型,进行了数值模拟分析,并结合以溴代十六烷为相变材料的相变微胶囊悬浮液的实验数据,将数值模拟结果与实验结果对比并进行误差分析。又对在不同质量分数、不同热流密度条件下的对流换热进行研究,分析了不同参数对对流换热强度的影响。并通过拟合得到了相变微胶囊悬浮液圆管内对流换热关联式。然后改变管径、流速条件重新模拟验证该关联式的通用性,其结果表明模拟结果与预测公式高度吻合,该关联式的通用性较好。  相似文献   

3.
利用计算流体动力学(computational fluid dynamic,CFD)方法对含新型内插件强化传热辐射炉管(fortified induced turbulence,FIT)进行了流体流动与传热特性的研究,采用RNG双方程模型求解了动量方程和能量方程,给出了FIT炉管内的流体流动和传热特性,包括速度场、湍动强度和温度场的分布;计算了FIT炉管的强化传热因子和压降。研究结果表明,FIT炉管内插件迫使流体流动由活塞流转变为旋转流,增强了流动湍流程度,符合流动-能量场协同理论,同时流体边界层由于FIT炉管的特殊结构而减薄。FIT炉管具有增强辐射传热、减薄边界层、增加比表面积和旋流增强等强化传热特性。相比于普通当量圆炉管,FIT强化传热炉管的整体传热能力提高了20%左右,证明该新型炉管强化传热效果显著,可以在工程实际中应用。  相似文献   

4.
5.
Experimental studies on isothermal steady state and non-isothermal unsteady state conditions were carried out in helical coils for Newtonian as well as for non-Newtonian fluids. Water and glycerol–water mixture (10 and 20% glycerol) were used as Newtonian, and 0.5–1% (w/w) dilute aqueous polymer solutions of Sodium Carboxy Methyl Cellulose (SCMC) and Sodium Alginate (SA) as non-Newtonian fluids are used in this study. These experiments were performed for coil curvature ratios as δ = 0.0757, 0.064 and 0.055 in laminar and turbulent flow regimes (total 258 tests). The CFD analyses for laminar and turbulent flow were carried out using FLUENT 12.0.16 solver of CFD package. The CFD calculation results (Nui, U, T2 and Two) for laminar and turbulent flow are compared with the experimental results and the work of earlier investigators which were found to be in good agreement. For the first time, an innovative approach of correlating Nusselt number to dimensionless number, ‘M’, Prandtl number and coil curvature ratio using least-squares power law fit is presented in this paper which is not available in the literature. Several other correlations for calculation of Nusselt number for Newtonian and non-Newtonian fluids, and two correlations for friction factor in non-Newtonian fluids (based on 78 tests and 138 tests) are proposed. These developed correlations were compared with the work of earlier investigators and are found to be in good agreement.  相似文献   

6.
The aim of this study is to investigate the flow hydrodynamics and wall heat transfer characteristics on the tray of a two-staggered walled region in a double-partition divided-wall column (DPDWC). An experimental setup of DPDWC is designed, and a theoretical temperature gradient (TG) model based on Fourier's equation, which describes the wall heat transfer, is proposed. A coupled computational fluid dynamics-TG model is developed to analyze the heat transfer characteristics across partitions of DPDWC. The effects of liquid velocity, gas velocity, and different wall thermal boundary conditions on the flow and temperature fields are studied. The results indicate that the lack of a gas cone near partitions led to few vertical backflows of the liquid phase on the tray. Furthermore, the TGs near the liquid phase outlet increased with an increase in the liquid phase velocity. This work provides a scope for design and operation of DPDWC for industrial implementation.  相似文献   

7.
8.
A combined experimental and computational study of the transfer of transparent index‐matched silica‐particle inks between two flat plates is presented for gravure printing applications. The influence of printing speed and initial ink droplet size on the ability to accurately transfer ink during the printing process is explored systematically. Smooth interface volume of fluid simulations show the same trends as the ink transfer observed in experiments over a wide range of printing speeds and for inks having different silica particle loadings. Our calculations indicate that for ink droplets with characteristic dimensions in the vicinity of 10 μm, which are of particular interest for gravure printing applications, ink transfer improves significantly due to the diminishing effect of gravity, and the increased importance of capillary forces at small length scales. © 2016 American Institute of Chemical Engineers AIChE J, 63: 1419–1429, 2017  相似文献   

9.
洪厚胜  张志强  蔡子金  颜旭  顾承真 《化工学报》2014,65(12):4684-4691
针对配置气体分布器的六叶轮自吸反应器建立了欧拉气液两相流三维瞬态模型,耦合Higbie气液传质模型,采用CFX软件对其气液混合过程的流场、气含率、吸气速率及溶氧传递过程进行数值模拟,获得了反应器的流动特性、气液分散性能、吸气特性及气液传质特性.分析了反应器内水平及竖直位置上的流型特征及溶氧传递性能,结合实验数据及经验关联式对比分析了对气含率及吸气速率的预测作用.结果表明,六叶轮转子及其配置的气体分布器可以获得较均匀的气液混合,气含率及吸气速率的预测与实验值偏差分别为5.2% 和17.6%,模拟发现在反应器底部近壁处溶氧及混合效果不佳.  相似文献   

10.
A kind of new modified computational fluid dynamics‐discrete element method (CFD‐DEM) method was founded by combining CFD based on unstructured mesh and DEM. The turbulent dense gas–solid two phase flow and the heat transfer in the equipment with complex geometry can be simulated by the programs based on the new method when the k‐ε turbulence model and the multiway coupling heat transfer model among particles, walls and gas were employed. The new CFD‐DEM coupling method that combining k‐ε turbulence model and heat transfer model, was employed to simulate the flow and the heat transfer behaviors in the fluidized bed with an immersed tube. The microscale mechanism of heat transfer in the fluidized bed was explored by the simulation results and the critical factors that influence the heat transfer between the tube and the bed were discussed. The profiles of average solids fraction and heat transfer coefficient between gas‐tube and particle‐tube around the tube were obtained and the influences of fluidization parameters such as gas velocity and particle diameter on the transfer coefficient were explored by simulations. The computational results agree well with the experiment, which shows that the new CFD‐DEM method is feasible and accurate for the simulation of complex gas–solid flow with heat transfer. And this will improve the farther simulation study of the gas–solid two phase flow with chemical reactions in the fluidized bed. © 2009 American Institute of Chemical Engineers AIChE J, 2009  相似文献   

11.
李美军  路源  张士杰  肖云汉 《化工学报》2017,68(4):1364-1372
为分析滴状和柱状流型下纯水蒸气水平管外降膜吸收过程的局部传热传质特性,建立非稳态数值模型考虑吸收过程中降膜区和管间区内液相的实际流动特征及气液两相的传质,同时对多管排区域采用实际边界条件,且考虑气液两相的传热过程。溶液的液膜Reynolds数范围为11~38。结果表明,与文献实验对比,相同流量下溶液出口浓度和温度的平均相对误差在2%以内;滴状和柱状流型下,降膜区溶液的平均浓度和温度均迅速下降,管间区先上升后下降,降膜区溶液的局部吸收速率分别约为管间区的10倍和7倍;柱状流型下降膜区的吸收速率明显小于滴状流型,管间区相差很小;吸收达到稳定后,滴状流型下溶液的平均浓度和温度变化均大于柱状流型,四排管降膜区溶液的浓度变化量依次增大,温度变化量依次减小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号