首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
向Fe-Cr-W-Ti-Y合金粉末中添加原子比为3∶1的Fe/Al混合粉末,利用Kirkendall效应和Fe、Al反应造孔制备铁基高温合金多孔材料.研究Fe/Al混合粉末的添加量对Fe-Cr-W-Ti-Y高温多孔材料开孔隙率及孔结构的影响.结果表明,加入Fe/Al混合粉末能显著提高烧结坯的开孔隙率,但并非所加Fe/Al混合粉末含量越多越好,Fe/Al混合粉末质量分数为15%时,烧结坯开孔隙率达到最大值33%.Fe/Al混合粉添加量在15%~45%范围内,随Fe/Al混合粉末含量增加烧结坯的开孔隙率下降.  相似文献   

2.
研究了在盐酸介质中,Cu(阻抑过氧化氢氧化钙羧酸钠褪色反应的适宜条件,建立了阻抑动力学光度法测定痕量铜的新方法。在25 mL测定液中,0~3.0μg铜呈线性关系,检出限为2.41×10-8g/mL。1 000倍K+,Na+,NH+4没有干扰;Al3+,Fe3+允许量较低,加入氟化物之后,可允许5倍Fe3+和10倍Al3+存在,方法已用于饮用水及河水中铜的测定。  相似文献   

3.
研究了Fe—Ni—Ti—Al因瓦合金化学成分、热处理工艺、冷加工工艺对合金力学和膨胀特性的影响。实验结果表明,Ti,Al的加入使合金膨胀系数增大,同时随着Ti,Al的加入,应适当增加Ni含量,以保证合金具有较低的膨胀系数;冷加工降低Fe—Ni—Ti—Al合金的膨胀系数,时效热处理则增大合金的膨胀系数。含Ti2.5%(wt),AI0.6%(wt)的Fe—Ni—Ti—A1因瓦合金经时效热处理和变形强化,抗拉强度可达1500MPa。  相似文献   

4.
通过铝热反应熔化法制备纯纳米晶Fe3Al材料以及添加质量分数分别为10%Ni,10%Cr,10% Mn,15% Mo,5% Cu和10%Cu合金元素的6种块体纳米晶Fe3Al材料;对含10% Ni的纳米晶Fe3Al材料分别进行600 ℃、1000℃,8h的等温处理.采用质量损耗法测定不同纳米晶Fe3Al材料在质量分数为5% H2SO4溶液中的均匀腐蚀速率;并研究各纳米晶Fe3Al材料在1200℃空气中的高温氧化性能.结果表明:添加15%Mo和添加10%Cu的纳米晶Fe3Al材料较纯纳米晶Fe3Al材料抗腐蚀性能提高明显;含10% Ni的纳米晶Fe3Al材料经过600℃ 等温处理后的腐蚀速率略高于未等温处理的材料,而经1000℃等温处理后腐蚀速率明显下降;随着合金元素Ni、Mn、Cr、Cu的加入,纳米晶Fe3Al材料的氧化速度增大,抗氧化性能降低.  相似文献   

5.
人造金刚石的合成一般使用合金触媒以降低合成时所需的高温高压,但触媒的使用会使杂质元素进入人造金刚石内部,严重影响金刚石的性能。采用750℃预灰化样品,加入硫酸与盐酸加热冒烟处理样品,而后将样品于950℃高温灼烧灰化后,再使用盐酸溶解。选择Cr267.716nm、Mn 257.610nm、Ni 221.648nm、Al 309.271nm、Fe 259.940nm、Mg 279.553nm、Ti 334.941nm为分析线,使用电感耦合等离子体原子发射光谱法(ICP-AES)测定金刚石中Cr、Mn、Ni、Al、Fe、Mg、Ti等7种元素。各元素校准曲线的线性相关系数r为0.999 4~0.999 9,线性关系良好;方法中各元素的测定下限为0.021~0.27μg/g。按照实验方法测定金刚石样品中Cr、Mn、Ni、Al、Fe、Mg、Ti,结果的相对标准偏差(RSD,n=6)为0.75%~1.9%,回收率为93%~107%。将按照实验方法前处理后的3个人造金刚石样品溶液分别采用ICP-AES和电感耦合等离子体质谱法(ICP-MS)进行测定,结果相吻合。  相似文献   

6.
提出了电感耦合等离子体原子发射光谱法(ICP-AES)同时测定高纯五氧化二钒中的Al、As、Ca、Cr、Fe、Si、Mo、P等8种杂质元素的方法。选择各元素分析谱线和仪器工作参数,以标准加入法配制校准曲线,消除基体干扰影响。方法检出限能够达到3μg/L,方法的回收率在95%-105%之间,小于0.10%杂质元素含量相对标准偏差令人满意,测定结果满足检测标准要求。  相似文献   

7.
样品经稀硝酸溶解完全后,选取Al 167.079 nm、Fe 238.204 nm、Sb 206.833 nm作为分析线,建立电感耦合等离子体全谱发射光谱法(ICP-OES)测定锌片中杂质元素(Al、Fe、Sb)含量的方法。实验表明,检测范围为Al:0.50~5.0μg/m L,Fe:0.05~0.50μg/m L,Sb:0.05~0.50μg/m L。校准曲线线性相关系数均在0.999以上。方法的检出限为0.018~0.100μg/g。按照实验方法测定锌片生产样品,结果的相对标准偏差(RSD,n=10)均小于5.0%,加标回收率在98%~102%之间。  相似文献   

8.
在过去几年中,人们对不含贵重元素的抗氧化钢日益发生兴趣。Fe—Al合金抗腐蚀性能高,特别引起注意。几种Fe—Al为基的三元合金中,最有希望的是Fe—Al—Mn和Fe—Al—C系统。本文报导了由这些系统引导出来的Fe—Al—C—Mn和Fe—Al—C—Mn—Si合金的研究情况。四元合金是将铝加入真空熔化的Fe—C合金中,然后通入氦气,再加锰制成。下列成份已研究过:7—13%Al,20—40%Mn,0.10—1%C。铜液浇铸成63.5毫米直径的圆锭,然后热轧成15.875毫米的圆棒。进行不同温度(最高达815℃)的拉力试  相似文献   

9.
锡铅焊料中的杂质元素对焊点的抗氧化性、润湿性、扩展面积有重要影响,因此对其进行测定意义重大。采用硝酸、氢氟酸溶解样品,选择H2动态反应池模式测定Fe,标准模式测定Al、P、Cu、Zn、As、Cd、Ag、Sb、Au、Bi,同时以Sc校正Al、P、Fe、Cu,以Cs校正Zn、As、Ag、Cd,以Tl校正Sb、Au、Bi,实现了电感耦合等离子体质谱法(ICP-MS)对锡铅焊料中这11种杂质元素含量的测定。在优化的实验条件下,11种杂质元素校准曲线的相关系数均大于0.999,方法的检出限在0.002~0.80μg/g范围内,测定下限在0.007~2.73μg/g范围内。用建立的实验方法测定锡铅焊料样品中Al、P、Fe、Cu、Zn、As、Cd、Ag、Sb、Au、Bi,平行测定11次结果的相对标准偏差(RSD)为0.85%~3.5%,加标回收率为90%~110%。将实验方法应用于锡铅焊料标准物质YT9302中Al、Fe、Cu、Zn、As、Sb、Bi共7种杂质元素的测定,结果与认定值一致。  相似文献   

10.
主要研究了废锂电池酸浸液杂质除杂原理,采取“两段酸浸—中和除Fe、Al—絮凝除F—深度除杂”非萃取除杂工艺。在除杂过程中,由于酸浸液含高浓度Ni、Co、Mn离子,中和剂的种类和浓度将影响Ni、Co、Mn的损失率。通过工艺控制及中和剂调试,选择10%CaCO3作为除Fe、Al、F中和剂,Fe、Al、Cu、F含量可分别从0.20、9.76、0.58、1.66 g/L降至0.01、0.02、0.01、29.86 mg/L,达到三元前驱体溶液杂质标准要求。此时,Ni、Co、Mn的损失率分别仅为0.96%、0.04%、0.01%,均在接受范围之内。  相似文献   

11.
针对铬矿主次组分同时测定中存在的问题,建立了熔融制样-X射线荧光光谱法同时测定铬矿中Cr_2O_3、Fe、MgO、SiO_2、Al_2O_3、CaO、P、S、K_2O、Ni、Co、Ti、Mn、V等14种主次组分的分析方法。以Li_2B_4O_7-LiBO_2(m∶m=67∶33)为熔剂,稀释比1∶20,定量加入氧化-脱模混合溶液(500g/L NaNO_3溶液-70g/L LiBr溶液),在700℃预氧化5min,在1100℃熔融20min,制得透明的熔片。使用铬矿标准物质与钒钛铁精矿标准物质,光谱纯试剂氧化镍按不同比例混合制备合成校准样品系列,拓展了校准曲线含量范围。方法的检出限为10~748μg/g。采用理论α系数法和经验系数法相结合的方法校正基体效应。对1个铬矿样品进行精密度考察,测定结果的相对标准偏差(RSD,n=12)均小于5%;采用实验方法对1个铬矿标准物质进行分析,测定结果与认定值相符,能满足铬矿中各成分的检测要求。  相似文献   

12.
于丽丽 《冶金分析》2019,39(10):37-42
稀土矿种类繁多,矿物组成复杂,常富含Ca、P、Fe、Ba、Si、S、Mn、Pb等元素,而采用熔融法制样时,富含Fe、Mn、Pb等单质元素的稀土矿样会腐蚀Pt-Au坩埚。试验将稀土矿石与混合熔剂[m(Li2B4O7)∶m(LiBO2)=33∶67]以质量比1∶14(稀释比)混合,再加入1mL 500g/L NH4NO3溶液为氧化剂、0.2mL 100g/L LiBr溶液为脱模剂,在1050℃下熔融制成均匀玻璃片,使用波长色散X射线荧光光谱法(WDXRF)测定轻稀土矿石中La2O3、CeO2、Pr6O11、Nd2O3、Sm2O3、Eu2O3、Gd2O3、Y2O3等8种主量稀土氧化物。方法中稀土氧化物的检出限为5~159μg/g。实验方法用于测定两个稀土矿石标准物质GSB04-3549-2019(稀土总量为4.44%)和GSB04-3309-2016(稀土总量为29.09%)中8种稀土氧化物,低品位稀土矿石标准物质(GSB04-3549-2019)中稀土氧化物测定结果的相对标准偏差(RSD,n=7)小于13%,高品位稀土矿石标准物质(GSB04-3309-2016)中稀土氧化物测定结果的相对标准偏差(RSD,n=7)小于2%。选取2个轻稀土矿石样品(稀土总量分别为2.55%和24.64%),按照实验方法进行稀土总量的加标回收试验,回收率为96%~100%。选取2个稀土矿石标准物质GSB04-3550-2019和GSB04-3311-2016以及2个轻稀土矿石样品,按照实验方法测定La2O3、CeO2、Pr6O11、Nd2O3、Sm2O3、Eu2O3、Gd2O3、Y2O3,测定值与标准值或电感耦合等离子体原子发射光谱法(ICP-AES)测定值相吻合。实验方法具有较广的适应性,能满足复杂矿物组成轻稀土矿石中主量稀土氧化物的检测。  相似文献   

13.
提出了一种用电感耦合等离子体原子发射光谱(ICP-AES)法直接测定Cr20Ni80镍铬合金溅射靶材中主量元素Cr和次量元素Si、Mn、P、Cu、Fe、Ti、Ce的分析方法。在低温加热下用硝酸-盐酸混合酸(V硝酸∶V盐酸∶V= 65∶200∶735)溶解试样,选择Si 251.612 nm、Mn 257.611 nm、P 178.287 nm、Cr 284.984 nm、Cu 324.754 nm、Fe 259.941 nm 、Ti 334.941 nm 和Ce 418.660 nm的光谱线作为分析线,大量基体元素如镍、铬、钇产生的基体效应影响可以通过基体匹配方法消除,谱线的重叠干扰和非光谱干扰不明显。测定主量元素Cr时,由于检测信号的短时漂移和波动对测定有影响,可以通过加入内标元素Y克服。对4种Cr20Ni80镍铬合金溅射靶材试样中上述8种元素进行测定,结果的相对标准偏差均小于2%,对Cr20Ni80镍铬合金标样中Si、Mn、P、Cr、Cu、Fe、Ti进行测定,测定值与认定值相符。  相似文献   

14.
采用碳酸钠-硼酸混合熔剂在950 ℃熔融样品6~8 min、然后使用盐酸(1+4)浸取后,选择Si 288.158 nm、Ca 315.887 nm、Fe 238.204 nm、Al 308.215 nm为分析线,使用电感耦合等离子体原子发射光谱法(ICP-AES)同时测定蛭石中SiO2、CaO、Fe2O3及Al2O3。各组分的质量分数在一定范围内与其发射强度呈线性,校准曲线的线性相关系数r均不小于0.999 5。实验方法用于测定玄武岩标准物质GBW07105和实际蛭石样品SiO2、CaO、Fe2O3及Al2O3,结果的相对标准偏差(RSD,n=6)为0.61%~1.8%;各组分的测定结果与认定值或者其他化学方法的测定值相吻合。  相似文献   

15.
龚仓 《冶金分析》2017,37(3):21-28
为提高现场快速分析的能力,充分发挥小型实验室设备的功能,实验采用能量色散X射线荧光光谱仪,直接使用粉末样品分析常规地质样品中的多种组分。用理论α系数和康普顿内标校正基体效应和谱线重叠干扰,直接将粉碎加工到200目(74μm)的样品放在液体塑料盒中进行测量。对地质样品标准物质进行样品用量试验表明,样品用量大于3.0g时,测量结果趋于稳定或者在认定值的准确度控制范围内变动,实验时选取4.0g作为样品用量。精密度试验表明,除组分La、Ce、Sn、W、U和Na_2O的相对标准偏差(RSD,n=12)大于10%外,其他组分的RSD都小于10%,尤其是组分Ti、Mn、Co、Rb、Sr、SiO_2、K_2O、CaO和Fe_2O_3的RSD都在1%以下。通过对未参加回归的标准物质的验证,参照《地球化学普查(比例尺1∶50 000)规范样品分析技术要求补充规定》,该法对常规地质样品可定量分析Ti、V、Mn、Co、Ni、Cu、Zn、Ga、As、Rb、Sr、Y、Zr、Nb、Th、U、K_2O、CaO和Fe_2O_3等19种组分,近似定量分析Ce和W,半定量分析Cr、La、Sn、SiO_2和Na_2O。由于将样品放入液体塑料盒中进行测量,无需压片制样设备,该法适合野外现场分析应用。  相似文献   

16.
敞开酸溶消解方法是测定水系沉积物中金属元素最常用的前处理方法之一,消解时使用不同的酸体系对电感耦合等离子体质谱法(ICP-MS)测定有较大的影响。以水系沉积物标准样品为研究对象,采用5 mL硝酸-5 mL氢氟酸、5 mL硝酸-5 mL氢氟酸-2 mL盐酸、5 mL硝酸-5 mL氢氟酸-2 mL过氧化氢、5 mL硝酸-5 mL氢氟酸-2 mL高氯酸4种酸体系对样品进行溶解,考察了其对ICP-MS测定16种金属元素(Li、Be、Cr、Mn、Co、Ni、Cu、Zn、Rb、Mo、Cd、Cs、Ba、W、Pb、Bi)结果的影响,并对测定数据进行显著性分析。研究表明:以5 mL硝酸-5 mL氢氟酸-2 mL过氧化氢为消解介质,16种待测元素的回收率均在75%~120%之内;消解水系沉积物的样品时,在5 mL硝酸-5 mL氢氟酸体系中加上氧化性强的物质可以提高消解效果。考虑到高氯酸中的Cl元素会影响Cr的测定,实验最终选择硝酸-氢氟酸-过氧化氢酸体系进行消解。试验还考察了称样量对测定结果的影响,并也对测定数据进行了显著性分析,最终选择称样量为100 mg。在确定的实验条件下对水系沉积物标准物质中16种金属元素进行测定,所得结果与认定值的对数差(ΔlgC)均小于0.13,满足标准DZ/T 0130.5—2006的要求,Bi(认定值为0.03~0.42 μg/g)、Ba(认定值为113~681 μg/g)、Cd(认定值为0.11~1.38 μg/g)和Pb(认定值为23~102 μg/g)的相对标准偏差(RSD,n=6)在4.7%~53.0%之间,其他元素的RSD(n=6)均在4.0%~20.5%之间  相似文献   

17.
石灰石、白云石样品与混合熔剂(Li2B4O7-LiBO2-LiBr)稀释比为1∶8,硝酸锂做氧化剂、950 ℃熔融20 min制备玻璃片,应用X射线荧光光谱法(XRF)测定石灰石、白云石中氧化钙、氧化镁、二氧化硅、三氧化二铝、三氧化二铁、氧化锰、磷、硫、二氧化钛、氧化锶、氧化钾和氧化钠12种组分。通过标准样品、光谱纯物质、标准样品与标准溶液合成样品及化学定值样品制作校准曲线并进行分段回归。应用康普顿散射线校正铁、锰、锶元素,经验系数法校正其他9种元素,可有效克服石灰石、白云石中各组分测定时基体效应的影响。对样品进行精密度考察,各组分测定结果的相对标准偏差(RSD,n=10)在0.18%~11.4%之间。对标准样品及未知样品进行正确度考察,测定值与认定值或湿法值一致。  相似文献   

18.
采用粉末压片制样,使用X射线荧光光谱仪对含铌多金属矿样中的铌进行测定。由于含铌的多金属矿标样极少且含量较低,实验选取钽矿石标准样品、矿区具有代表性的化学法定值多个样品,及其他土壤、岩石、多金属矿物标准样品、矿区定值样品混合配制的校准样品,制成一套铌含量5.9~2 700 μg/g、梯度适当的校准样品系列,绘制的铌校准曲线相关系数为0.998 6。采用经验系数和康普顿散射线内标法校正了基体效应,用Omnian 近似定量软件、化学分析法与岩矿鉴定分析,确定了矿区矿物中主要成分SiO2、Al2O3、CaO、MgO、K2O、Pb、Zn、Cu、Fe、Zr、Mo、Rb、Hf、Th、U、Ti、Ga及稀土的最高允许量。综合考虑样品基体对铌检出限的影响,实验选取8个标准样品计算出检出限的平均值为1.62 μg/g。对岩石标样进行精密度考察,结果的相对标准偏差(RSD,n=12)为2.2%。对标准样品及矿区实际样品进行分析,测定值与认定值、实验室内其他方法的测定值及其他实验室的测定值吻合,满足《地质矿产实验室测试质量管理规范》的要求。  相似文献   

19.
根据3种不同类型镍矿床选取了20个镍矿石标准物质绘制校准曲线,解决了镍矿石赋存状态的复杂性问题。采用混合熔剂(m(Li2B4O7):m(LiBO2):m(LiF)=4.5:1:0.4)和标准物质以质量比为40:1进行稀释熔融,加入1 g氧化剂LiNO3、6滴加入脱模剂LiBr溶液(1 g/mL),针对Cu含量高的铜镍硫化矿样品在熔融时易脆裂和裂痕的问题,采用加入LiBr溶液后用混合熔剂完全覆盖的方法有效防止Br的挥发,成功地制备出高精度的玻璃熔片。建立了测定镍矿石中NiO、Cr2O3、CuO、PbO、MgO、ZnO、SiO2、Al2O3、MnO、TiO2、CoO、TFe2O3、CaO、K2O、Na2O、P2O516种主次成分的定量分析方法。采用此方法分析GBW07147国家镍矿石标准物质,16种主次成分测定结果的相对标准偏差(RSD)为0.09%~4.5%,对不参加建立校准曲线的GBW07148、GBW07196国家镍矿石标准物质进行分析,分析结果与认定值相符合,满足日常生产任务需要。  相似文献   

20.
李强  张学华 《冶金分析》2014,34(1):28-33
应用台式X射线荧光光谱仪结合压片法制样现场快速测定太平洋多金属结核和富钴结壳样品中的氧化钠、氧化镁、三氧化二铝、二氧化硅、五氧化二磷、氧化钾、氧化钙、二氧化钛、硫、氯、锰、铁、钴、镍、铜、锌、钒、锶、锆、钡、铈和钇等组分。采用国家标准物质、以国家标准物质为基体制备的校准样品和定值富钴结壳样品绘制校准曲线, 解决了相关标准样品不足的问题。对22个组分的测量条件进行优化, 并通过经验系数法校正了主要成分二氧化硅、氧化钙、铁和锰的干扰。方法的检出限在10.5~733 μg/g。精密度试验结果表明, 各组分测定值的相对标准偏差(RSD, n=7)在0.56%~7.7%之间。方法用于实际样品分析, 分析结果与实验室内其他方法的结果吻合, 能够满足野外现场多种组分同时快速分析的要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号