首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Direct synthesis route was developed to support TiO2–ZrO2 binary metal oxide onto the carbon templated mesoporous silicalite-1 (CS-1). Metal hydroxide modified carbon particles could play a role as hard template and simultaneously support metal components on the mesopores during the crystallization of zeolites. Such supported TiO2–ZrO2 binary metal oxides (TZ/CS-1) showed better resistance to deactivation in the oxidative dehydrogenation of ethylbenzene (ODHEB) in the presence of CO2. These catalysts were found to be active, selective and catalytically stable (10 h of time-on-stream) at 600 °C for the dehydrogenation of ethylbenzene (EB) to styrene (Sty).  相似文献   

2.
The employment of mineral SrSO4 crystals and powders for preparing SrTiO3 compound was investigated, with coexistence of Ti(OH)4·4.5H2O gel under hydrothermal conditions, at various temperatures (150–250 °C) for different reaction intervals (0.08–96 h) in KOH solutions with different concentrations. The complete dissolution of the SrSO4 crystal occurred at 250 °C for 96 h in a 5 M KOH solution, resulting in the synthesis of SrTiO3 particles with two different shapes (peanut-like and cubic). In contrast, very fine SrTiO3 pseudospherical particles were crystallized when SrSO4 powders were employed as precursor. Variations on the SrTiO3 particle shape and size were found to be caused by the differences in the dissolution rate of the SrSO4 phase in the alkaline KOH solution. The crystallization of SrTiO3 particles was achieved by a bulk dissolution–precipitation mechanism of the raw precursors, and this mechanism was further accelerated by increasing the reaction temperature and concentration of the alkaline media. Kinetic data depicted that the activation energy required for the formation of SrTiO3 powders from the complete consumption of a SrSO4 single crystal plate under hydrothermal conditions, is 27.9 kJ mol−1. In contrast, when SrSO4 powders were employed (28–38 μm), the formation of SrTiO3 powder proceeded very fast even for a short reaction interval of 3 h at 250 °C in a 5 M KOH solution.  相似文献   

3.
Nitrogen-rich Ca-α-Sialon (CaxSi12−2xAl2xN16 with x = 0.2, 0.4, and 0.8, 1.2 and 1.6) ceramics were prepared from the mixtures of Si3N4, AlN and CaH2 powders in a hot press at 1800 °C using a pressure of 35 MPa and a holding time of 4 h, and then were investigated with respect to reaction mechanism, phase stability and oxidation resistance. In addition the sample with x = 1.6 was prepared in the temperature range 600–1800 °C using a pressure of 35 MPa and a holding time of 2 h. The α-Sialon phase was first observed at 1400 °C but the α-Si3N4 and AlN phases were still present at 1700 °C. Phase pure Ca-α-Sialon ceramics could not be obtained until the sintering temperature reached 1800 °C. The phase pure nitrogen-rich Ca-α-Sialon exhibited no phase transformation in the temperature range 1400–1600 °C. In general, mixed α/β-Sialon showed better oxidation resistance than pure α-Sialon in the low temperature range (1250–1325 °C), while α-Sialons with compositions located at α/β-Sialon border-line showed significant weight gains over the entire temperature range tested (1250–1400 °C). The phases formed upon oxidation were characterized by X-ray, SEM and TEM studies.  相似文献   

4.
Phase formation of Mn-doped zinc silicate (Zn2SiO4:Mn2+, ZSM) in high-temperature and high-pressure water was studied by in situ observations with a hydrothermal diamond anvil cell (HDAC). Precursor was prepared with zinc oxalate dihydrate, manganese oxalate, and silica, where the Zn/Mn/Si molar ratio was 192/8/120 to 199/1/120. Conditions of particle formation were at temperatures up to 650 °C and at pressures up to 1250 MPa. Precursors dissolved at temperatures of 145–203 °C and needle-like particles formed through homogeneous nucleation at temperatures from 357 to 374 °C, close to the critical point of water. The needle-like particles grew at growth rates of 0.5–3.8 μm/s and were identified to be ZSM as evident from their green luminescence. ZSM synthesized in supercritical water (400 °C for 180 min) by batch reactions had comparable luminescence with that of ZSM produced by solid-state reaction (1200 °C for 240 min) using the same precursor. The key finding in this work is that the precursors can be made to dissolve in near-critical water and that this allows ZSM to form via a homogeneous nucleation process.  相似文献   

5.
Mesoporous silicas with vesicular and onion-like morphologies were assembled through hydrogen-bonding pathway from sodium silicate as silica source and electrically neutral α,ω-diamine, Jeffamine D2000 surfactant (H2NCH(CH3)CH2[OCH2CH(CH3)]33NH2) as template in aqueous media at different synthesis temperatures (25, 60 and 100 °C). Assembling the material at 100 °C afforded onion-like core shell mesoporous silica, while at relatively lower temperature, e.g. 25 and 60 °C, multilamellar vesicles were obtained. Mesoporous silica with onion-like morphology was also obtained by a two-step synthesis involving an aging period of 20 h at room temperature followed by a hydrothermal stage (1–12 h) at 100 °C. The heavily cross-linked (Q4/Q3 ratio of 4.43) onion-like mesophase silica exhibited high hydrothermal stability. The BET surface area, pore volume and KJS (Kruk-Jaroniec-Sayari) pore diameter of the onion-like mesoporous silica were found to be 464 m2 g−1, 1.16 m3 g−1 and 7.2 nm, respectively.  相似文献   

6.
Thin-film CoB alloy catalysts were prepared on Ni-foam substrates using electroless as well as electroplating techniques. Electroless plating was carried out using cobalt (II) sulfate as the source of Co2+, sodium succinate as the complexing agent, and dimethyamine borane as the source of boron as well as the reducing agent. Electroplating was carried out using cobalt (II) sulfate and cobalt (II) chloride as the sources of cobalt, and boric acid as the source of boron. The thin-film CoB/Ni-foam templates were characterized using ICP, XRD and SEM techniques. The normalized B content was in the range of 1.0–1.30 and 0.20–0.60 wt.% for electroless and electroplated templates, respectively. The B content is less than that required for stoichiometric alloy formation, which indicates the simultaneous deposition of the Co metal along with CoB alloy. An optimum condition of 0.100 M L−1 each of cobalt (II) sulfate heptahydrate Co(SO4)·7H2O, sodium succinate (Na2C4H4O4) and dimethylamine borane (CH3)2NHBH3, at 60 °C with the pH value of 4–5 and a plating time of 1 h was identified for the preparation of the catalyst templates by electroless plating. Where as, 0.125 M L−1 each of cobalt (II) chloride hexahydrate (CoCl2·6H2O), Co(SO4)·7H2O, 0.125 M L−1 of boric acid at the current density range of 160–320 mA cm−2 and a temperature of 60 °C was identified as the optimum condition for the electroplating method. Maximum H2 generation rates of 1.64 and 0.30 L min−1 g−1 of catalyst were obtained with electroless and electroplated thin-film CoB/Ni-foam templates, respectively. The suitability of the electroless plated CoB/Ni-foam catalyst template for extended duration of hydrogen generation from NaBH4 was studied up to 60 h. Activation energies of 44.47 and 54.89 kJ mol−1 were calculated for electroless and electroplated CoB/Ni-foam catalyst templates, respectively.  相似文献   

7.
LiFePO4/carbon composite was synthesized at 600 °C for 4 h in an Ar atmosphere by a stearic acid assisted rheological phase method using amorphous nano-FePO4 as the iron source. XRD, SEM and TEM observations show that the LiFePO4/carbon composite has good crystallinity, ultrafine and well-dispersed particles of 60–150 nm size and in situ carbon coated on the surface of LiFePO4 crystallites. The synthesized LiFePO4/carbon composite shows a high discharge capacity of 160 mAh g−1 and 155 mAh g−1 at rates of 0.5 C and 1 C, respectively. Even at a high current density of 30 C, the material still presents a discharge capacity of 93 mAh g−1 and exhibits an excellent cycling performance.  相似文献   

8.
Two isomorphous VOPO4 samples were synthesized by means of well-known aqueous and organic preparation methods. These materials are further used for the in situ generation of ammonium salt of 12-molybdophosphoric acid (AMPA) from their solid phase phosphate components. Formation of AMPA was confirmed by XRD, FTIR, Raman and XPS analyses. The activity of the catalysts was tested in a fixed bed tubular glass reactor at atmospheric pressure for the selective ammoxidation of 2-methylpyrazine (MP) to 2-cyanopyrazine (CP). The reaction was carried out in the temperature range of 360–420 °C. Between the two mono-phosphates tested, the α-VOPO4 is observed to show somewhat better activity compared to β-VOPO4. Interestingly, in situ synthesized AMPA catalysts displayed significantly better performance compared to their corresponding parent VOPO4 solids. Among all catalysts tested, AMPA-α-VOPO4 exhibited the best performance (conversion (MP) = ca. 90%, selectivity (CP) = 65% at T = 420 °C). The differences in catalytic performance of the tested catalysts are ascribed to the structural differences of the used VOPO4 solids.  相似文献   

9.
Nickel tungstate (NiWO4) nano-particles were successfully synthesized at low temperatures by a molten salt method, and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and ultraviolet visible spectra techniques (UV–vis), respectively. The effects of calcining temperature and salt quantity on the crystallization and development of NiWO4 crystallites were studied. Experimental results showed that the well-crystallized NiWO4 nano-particles with about 30 nm in diameter could be prepared at 270 °C with 6:1 mass ratio of the salt to NiWO4 precursor. XRD analysis confirmed that the product was a pure monoclinic phase of NiWO4 with wolframite structure. UV–vis spectrum revealed that NiWO4 nano-particles had good light absorption properties in both ultraviolet and visible light region.  相似文献   

10.
Thermal behaviour of synthetic Cu–Mg–Mn and Ni–Mg–Mn layered double hydroxides (LDHs) with MII/Mg/Mn molar ratio of 1:1:1 was studied in the temperature range 200–1100 °C by thermal analysis (TG/DTA/EGA), powder X-ray diffraction (XRD), Raman spectroscopy, and voltammetry of microparticles. Powder XRD patterns of prepared LDHs showed characteristic hydrotalcite-like phases, but further phases were indirectly found as admixtures. The Cu–Mg–Mn precipitate was decomposed at temperatures up to ca. 200 °C to form an XRD-amorphous mixture of oxides. The crystallization of CuO (tenorite) and a spinel type mixed oxide of varying composition CuxMgyMnzO4 with Mn4+ was detected at 300–500 °C. At high temperatures (900–1000 °C), tenorite disappeared and a consecutive crystallization of 2CuO·MgO (gueggonite) was observed. The high-temperature transformation of oxide phases led to a formation of CuI oxides accompanied by oxygen evolution. The DTA curve of Ni–Mg–Mn sample exhibited two endothermic effects characteristic for hydrotalcite-like compounds. The first one with minimum at 190 °C can be ascribed to a loss of interlayer water, the second one with minimum at 305 °C to the sample decomposition. Heating of the Ni–Mg–Mn sample at 300 °C led to the onset of crystallization of oxide phases identified as NixMgyMnzO4 spinel, (Ni,Mg)O oxide containing Mn4+ cations, and easily reducible XRD-amorphous species, probably free MnIII,IV oxides. At 600 °C (Raman spectroscopy) and 700 °C (XRD), the (Ni,Mg)6MnO8 oxide with murdochite structure together with spinel phase were detected. Only spinel and (Ni,Mg)O were found after heating at 900 °C and higher temperatures. Temperature-programmed reduction (TPR) profiles of calcined Cu–Mg–Mn samples exhibited a single reduction peak with maximum around 250 °C. The highest H2 consumption was observed for the sample calcined at 800 °C. The reduction of Ni–Mg–Mn samples proceeded by a more complex way and the TPR profiles reflected the phase composition changing depending on the calcination temperature.  相似文献   

11.
This paper describes the development of an environment-friendly, slow-release fertilizer of the micronutrient iron. The compound is water insoluble, and is based on a polymeric phosphate structure. Kinetics and solubility of products in the goethite [FeO(OH)]–H3PO4 and [FeO(OH)]–MgO–H3PO4 systems were studied at 170–300 °C. Polymerization patterns were complex. The presence of Mg as additive, improved product properties. The fertilizer was prepared by polymerization of goethite, magnesium oxide and phosphoric acid to an optimized chain length at 200 °C, followed by neutralization with magnesia. The fertilizer was soluble in citrate and DTPA. A significant increase in the yield of wheat and uptake of iron was observed at a dosage of 2 kg/ha Fe as the slow-release fertilizer.  相似文献   

12.
Barium titanate (BaTiO3) powders were synthesized from commercially available raw materials (BaCO3 and rutile) without particular mechanochemical processing by solid-state reactions in water vapour atmosphere. The formation rate of BaTiO3 was accelerated by water vapour and single phase of BaTiO3 was obtained by calcination at 700 °C for 4 h in water vapour atmosphere, though high temperature (850 °C for 2.5 h) was required by calcinations in air to complete the reaction. The formation kinetics followed the Valensi–Carter equation, which suggested that the reaction proceeded by a diffusion controlled process. The apparent activation energy for the formation of BaTiO3 in air and water vapour atmosphere was estimated to be 361 ± 20 kJ/mol and 142 ± 17 kJ/mol, respectively. Water vapour is considered to enhance thermal decomposition of BaCO3 and formation of BaTiO3 by attacking surface Ti–O–Ti bonds in TiO2, increasing partial pressure of Ba(OH)2, and producing vacancies in the BaTiO3 structure.  相似文献   

13.
Local rice husk was precleaned and properly heat treated to produce high purity amorphous SiO2 for use in the synthesis of ZSM-5 zeolite and silicalite by hydrothermal treatment (150 °C) of the precursor gels (pH 11) under autogenous pressure in a short reaction time (4–24 h). A wide range of SiO2/Al2O3 molar ratios (30–2075) and a small template content were employed to fully exploit the potential of rice husk ash (RHA). The mineralogical phases, morphology, specific surface area and pore volume of the synthesized products were investigated by XRD, FT-IR, SEM and BET analyses, respectively. Under the employed conditions, it was found that the gels with a low range of SiO2/Al2O3 molar ratios (<80) produced an amorphous phase to poorly crystalline ZSM-5 zeolite; those with a medium range (80–200) favored well crystalline ZSM-5 zeolite production with a large surface area; whilst those with a high range of SiO2/Al2O3 molar ratios (>200) yielded silicalite. The increase in Na2O content, which was derived from the addition of NaAlO2 to attain the desired SiO2/Al2O3 molar ratio of the gel, did not significantly enhance the crystallization rate, crystallinity, or yield of products. On the contrary, these properties were greatly affected by the increase in the SiO2/Al2O3 molar ratio.  相似文献   

14.
The hydrothermal reaction of Zn(NO3)2 · 6H2O, bpp and NH4VO3 in water at 140 °C for 80 h yields an unprecedented chiral three-dimensional vanadium oxide complex, [Zn(bpp)V2O6] (1). The structure of 1 consists of wave-like two-dimensional networks, linked through {ZnO2N2} building blocks and bpp ligands into a three-dimensional covalently linked assembly. Furthermore, the title compound consists of infinite helical chains and all helical chains are left-handed.  相似文献   

15.
The microstructure, electrical properties, dielectric characteristics, and DC accelerated aging behavior of the ZVM-based varistors were investigated for different sintering temperatures of 800–950 °C. The microstructure of the ZVM-based ceramics consisted of mainly ZnO grain and secondary phase Zn3(VO4)2, which acts as liquid-phase sintering aid. The Zn3(VO4)2 has a significant effect on the sintered density, in the light of an experimental fact, which the decreases of the Zn3(VO4)2 distribution with increasing sintering temperature resulted in the low sintered density. The breakdown field exhibited the highest value (17,640 V/cm) at 800 °C in the sintering temperature and the lowest value (992 V/cm) at 900 °C in the sintering temperature. The nonlinear coefficient exhibited the highest value, reaching 38 at 800 °C and the lowest value, reaching 17 at 850 °C. The varistor sintered at 900 °C exhibited not only high nonlinearity with 27.2 in nonlinear coefficient, but also the highest stability, in which %ΔE1 mA = −0.6%, %Δα = −26.1%, and %Δ tan δ = +21.8% for DC accelerated aging stress of 0.85 E1 mA/85 °C/24 h.  相似文献   

16.
In this paper, ferrite process of electroplating sludge and enrichment of copper by hydrothermal reaction was investigated. By the hydrothermal treatment, Zn, Ni, Cu, Cr-bearing electroplating sludge can be transformed into high value-added Ni–Zn–Cr ferrite by adding iron source (FeCl3·6H2O) and precipitator. The most optimum reaction conditions were explored: 1.57 g/g dry sludge as the dosage of FeCl3·6H2O, pH 8.5 of the slurry adjusted by ammonia, 4 h as the reaction time, and 200 °C as the reaction temperature. Under these conditions, the purer Ni–Zn–Cr ferrite could be prepared, and Cu was extracted to the range from 76 wt% to nearly 84 wt%, when ammonia was selected as the precipitator. Leaching toxicity of heavy metals from Ni–Zn–Cr ferrite prepared with additional iron source and precipitator, was much lower than the regulated limit of Toxicity Characteristic Leaching Procedure (TCLP), indicating that Ni–Zn–Cr ferrite synthesized hydrothermally from electroplating sludge had a better chemical stability. Therefore, the ferrite process by hydrothermal reaction is a feasible method with respect to the reuse and self-purification of electroplating sludge.  相似文献   

17.
Mg–Al layered double hydroxide (Mg–Al LDH) was modified with organic acid anions using a coprecipitation technique, and the uptake of heavy metal ions from aqueous solution by the Mg–Al LDH was studied. Citrate·Mg–Al LDH, malate·Mg–Al LDH, or tartrate·Mg–Al LDH, which had citrate3− (C6H5O73−), malate2− (C4H4O52−), or tartrate2− (C4H4O62−) anions intercalated in the interlayer, was prepared by dropwise addition of a mixed aqueous solution of Mg(NO3)2 and Al(NO3)3 to a citrate, malate, or tartrate solution at a constant pH of 10.5. These Mg–Al LDHs were found to take up Cu2+ and Cd2+ rapidly from an aqueous solution at a constant pH of 5.0. This capacity was mainly attributable to the formation of the citrate–metal, malate–metal, and tartrate–metal complexes in the interlayers of the Mg–Al LDHs. The uptake of Cu2+ increased in the order malate·Mg–Al LDH < tartrate·Mg–Al LDH < citrate·Mg–Al LDH. The uptake of Cd2+ increased in the order malate·Mg–Al LDH < tartrate·Mg–Al LDH = citrate·Mg–Al LDH. These differences in Cu2+ and Cd2+ uptake were attributable to differences in the stabilities of the citrate–metal, malate–metal, and tartrate–metal complexes. These results indicate that citrate3−, malate2−, and tartrate2− were adequately active as chelating agents in the interlayers of Mg–Al LDHs.  相似文献   

18.
Mo–V–X (X = Nb, Sb and/or Te) mixed oxides have been prepared by hydrothermal synthesis and heat-treated in N2 at 450 °C or 600 °C for 2 h. The calcination temperature and the presence or absence of Nb determines the nature of crystalline phases in the catalyst. Nb-containing catalysts heat-treated at 450 °C are mostly amorphous solids, while Nb-free catalysts heat-treated at 450 °C and samples treated at 600 °C clearly contain crystalline phases. TPR-H2 experiments show higher H2-consumption on catalysts with amorphous phases. Catalytic results in the oxidative dehydrogenation of ethane indicate that the selective production of the olefin is strongly related to the development of the orthorhombic Te2M20O57 or (SbO)2M20O56 (M = Mo, V, Nb) phase (the so-called M1 phase), which is mainly formed at 600 °C. This active and selective crystalline phase is characterized to show moderate reducibility and active centers enough for the selective oxidative activation of ethane with the minimum quantity possible of active centers for ethylene activation. In this sense, the best yield to ethylene has been achieved on a Mo–V–Te–Nb mixed oxide.  相似文献   

19.
Supercritical impregnation of Radiata pine with ethyl acetate and decanal using CO2 as carrier solvent has been studied at pilot plant scale. Radiata pine is one of the most common wood species that is originally from Australia and is widely grown in Spain and Portugal and ethyl acetate and decanal were selected as organic compounds.Some experiences were carried out to obtain the optimal operating conditions for the supercritical impregnation process. Experiments were conducted at pressures of 7–15 MPa, temperatures of 35–50 °C and solvent flow rate between 1.5 and 3.5 kg/h. The results of this study have indicated that the treatment gives much better preservative penetration and retention operating with low pressures (7.5 MPa), low temperatures (close to 35 °C) and moderate CO2 flow rate (3.5 kg/h) in the selected operating range. Moreover, a simple mathematical model of two adjustable parameters (external mass transfer coefficient and partition coefficient) has demonstrated to fit the experimental impregnation curves with reasonable accuracy (average absolute deviation, 3–10%).  相似文献   

20.
Three Na-based thermochemical cycles for capturing CO2 from air are considered: (1) a NaOH/NaHCO3/Na2CO3/Na2O cycle with 4 reaction steps, (2) a NaOH/NaHCO3/Na2CO3 cycle with 3 reactions steps, and (3) a Na2CO3/NaHCO3 cycle with 2 reaction steps. Depending on the choice of CO2 sorbent – NaOH or Na2CO3 – the cycles are closed by either NaHCO3 or Na2CO3 decomposition, followed by hydrolysis of Na2CO3 or Na2O, respectively. The temperature requirements, energy inputs, and expected products of the reaction steps were determined by thermodynamic equilibrium and energy balance computations. The total thermal energy requirement for Cycles 1, 2, and 3 are 481, 213, and 390 kJ/mol of CO2 captured, respectively, when heat exchangers are employed to recover the sensible heat of hot streams. Isothermal and dynamic thermogravimetric runs were carried out on the pertinent carbonation, decomposition, and hydrolysis reactions. The extent of the NaOH carbonation with 500 ppm CO2 in air at 25 °C – applied in Cycles 1 and 2 – reached 9% after 4 h, while that for the Na2CO3 carbonation with water-saturated air – applied in Cycle 3 – was 3.5% after 2 h. Thermal decomposition of NaHCO3 – applied in all three cycles – reached completion after 3 min in the 90–200 °C range, while that of Na2CO3 – applied in Cycle 1 – reached completion after 15 min in the 1000–1400 °C range. The significantly slow reaction rates for the carbonation steps and, consequently, the relatively large mass flow rates required, introduce process complications in the scale-up of the reactor technology and impede the application of Na-based sorbents for capturing CO2 from air.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号