首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Fifteen hundred and thirty cells were recorded in the medial vestibular nucleus (MVN) of alert monkeys whose vestibuloocular reflex (VOR) had been adapted to one of two kinds of spectacles. The "high-gain" sample was recorded from monkeys that had worn 2.0 x telescopic spectacles; the gain of the VOR in the dark (eye velocity divided by head velocity) was greater than 1.5. The "low-gain" sample was recorded from monkeys that had worn goggles providing a visual field that was fixed with respect to the freely turning head; the gain of the VOR was less than 0.4. 2. Cells showing modulation of firing rate related to imposed head velocity were grouped into four categories: pure vestibular (10), vestibular-plus-saccade (10), vestibular-plus-position (10), and vestibular-plus-head/body (24). Sensitivity to head velocity was measured from averaged responses to sinusoidal, 0.4-Hz whole-body oscillation in the horizontal plane. Almost all cells (98%) having increased firing during ipsilateral head rotation received inputs from the horizontal semicircular canals. Conversely, 82% of cells having increased firing during contralateral head rotation received inputs from the vertical canals. 3. There were no statistically significant differences in resting discharge rate, phase shift, or sensitivity to head velocity between the high- and low-gain samples of any of the cell types. Nonetheless, there was a consistent tendency, evident in all the functionally defined cell groups, for the sensitivity to be about 20% greater in the high-gain samples. However, this difference is small by comparison with the fourfold difference in VOR gain. 4. Detailed scrutiny of the response properties of individual cells suggested that the small differences in sensitivity reflect small changes distributed throughout the population, rather than large and potentially significant changes within a small sub-population. 5. Our data indicate that large, adaptive changes in the gain of the VOR are accompanied by only minor changes in the vestibular sensitivity and no changes in the phase shift or resting discharge rates of cells in the MVN. It remains possible that large changes in vestibular sensitivity occurred in cells we did not sample or in subgroups we could not identify. We argue that this is unlikely and that the major changes underlying VOR plasticity occur after the first central synapse in the VOR pathways.  相似文献   

2.
Human vestibuloocular reflex and its interactions with vision and fixation distance during linear and angular head movement. J. Neurophysiol. 80: 2391-2404, 1998. The vestibuloocular reflex (VOR) maintains visual image stability by generating eye movements that compensate for both angular (AVOR) and linear (LVOR) head movements, typically in concert with visual following mechanisms. The VORs are generally modulated by the "context" in which head movements are made. Three contextual influences on VOR performance were studied during passive head translations and rotations over a range of frequencies (0.5-4 Hz) that emphasized shifting dynamics in the VORs and visual following, primarily smooth pursuit. First, the dynamic characteristics of head movements themselves ("stimulus context") influence the VORs. Both the AVOR and LVOR operate with high-pass characteristics relative to a head velocity input, although the cutoff frequency of the AVOR (<0.1 Hz) is far below that of the LVOR ( approximately 1 Hz), and both perform well at high frequencies that exceed, but complement, the capabilities of smooth pursuit. Second, the LVOR and AVOR are modulated by fixation distance, implemented with a signal related to binocular vergence angle ("fixation context"). The effect was quantified by analyzing the response during each trial as a linear relationship between LVOR sensitivity (in deg/cm), or AVOR gain, and vergence (in m-1) to yield a slope (vergence influence) and an intercept (response at 0 vergence). Fixation distance (vergence) was modulated by presenting targets at different distances. The response slope rises with increasing frequency, but much more so for the LVOR than the AVOR, and reflects a positive relationship for all but the lowest stimulus frequencies in the AVOR. A third influence is the context of real and imagined targets on the VORs ("visual context"). This was studied in two ways-when targets were either earth-fixed to allow visual enhancement of the VOR or head-fixed to permit visual suppression. The VORs were assessed by extinguishing targets for brief periods while subjects continued to "fixate" them in darkness. The influences of real and imagined targets were most robust at lower frequencies, declining as stimulus frequency increased. The effects were nearly gone at 4 Hz. These properties were equivalent for the LVOR and AVOR and imply that the influences of real and imagined targets on the VORs generally follow low-pass and pursuit-like dynamics. The influence of imagined targets accounts for roughly one-third of the influence of real targets on the VORs at 0.5 Hz.  相似文献   

3.
1. We studied the contribution of the individual semicircular canals to the generation of horizontal and torsional eye movements in cynomolgus monkeys. Eye movements were elicited by sinusoidal rotation about a vertical (gravitational) axis at 0.2 Hz with the animals tilted in various attitudes of static forward or backward pitch. The gains of the horizontal and torsional components of the vestibuloocular reflex (VOR) were measured for each tilt position. The gains as a function of tilt position were fit with sinusoidal functions, and spatial gains and phases were determined. After control responses were recorded, the semicircular canals were plugged, animals were allowed to adapt, and the test procedure was repeated. Animals were prepared with only the anterior and posterior canals intact [vertical canal (VC) animals], with only the lateral canals intact [lateral canal (LC) animal], and with only one anterior and the contralateral posterior canals intact [right anterior and left posterior canal (RALP) animals; left anterior and right posterior canal (LARP) animals]. 2. In normal animals, the gain of the horizontal (yaw axis) velocity of the compensatory eye movements decreased as they were pitched forward or backward, and a torsional velocity appeared, reversing phase at the peak of the horizontal gain. After the anterior and posterior canals were plugged (LC animal), the horizontal component was reduced when the animal was tilted backward; the gain was zero with about -60 degrees of backward tilt. The spatial phase of the torsional component had the same characteristics. This is consistent with the fact that both responses were produced by the lateral canals, which from our results are tilted between 28 and 39 degrees above the horizontal stereotaxic plane. 3. After both lateral canals were plugged (VC animals), horizontal velocity was reduced in the upright position but increased as the animals were pitched backward relative to the axis of rotation. Torsional velocities, which were zero in the upright position in the normal animal, were now 180 degrees out of phase with the horizontal velocity. The peak values of the horizontal and torsional components were significantly shifted from the normal data and were closely aligned with each other, reaching peak values at approximately -56 degrees pitched back (-53 degrees horizontal, -58 degrees torsional). The same was true for the LARP and RALP animals; the peak values were at -59 degrees pitched back (-55 degrees horizontal, -62 degrees torsional). Likewise, in the LC animal the peak yaw and roll gains occurred at about the same angle of forward tilt, 35 degrees (30 degrees horizontal, 39 degrees torsional). Thus, in each case, the canal plugging had transformed the VOR from a compensatory to a direction-fixed response with regard to the head. Therefore there was no adaptation of the response planes of the individual canals after plugging. 4. The data were compared with eye velocity predictions of a model based on the geometric organization of the canals and their relation to a head coordinate frame. The model used the normal to the canal planes to form a nonorthogonal coordinate basis for representing eye velocity. An analysis of variance was used to define the goodness of fit of model predictions to the data. Model predictions and experimental data agreed closely for both normal animals and for the animals with canal lesions. Moreover, if horizontal and roll components from the LC and VC animals were combined, the summation overlay the response of the normal monkeys and the predictions of the model. In addition, a combination of the RALP and LARP animals predicted the response of the lateral-canal-plugged (VC) animals. 5. When operated animals were tested in light, the gains, peak values, and spatial phases of horizontal and roll eye velocity returned to the preoperative values, regardless of the type of surgery performed. This indicates that vision compensated for the lack o  相似文献   

4.
Administered a large battery of behavioral tests to 11 normal mice and to 20 mice with varying degrees of otoconial agenesis due to genes affecting vestibular development. Many significant differences were found, but a factor analysis revealed that the variance on the 11 best tests could be accounted for in terms of 2 underlying variables. Factor I, the more important of the 2, was associated with activity, habituation, and spontaneous alternation. Factor II appeared to represent a fear of new stimuli or situations. In both cases, factor scores were highly related to the degree of otoconial deficiency. In a 2nd experiment, a subgroup of 5 Ss with severe otoconial agenesis displayed hyperactivity and a total absence of either habituation or spontaneous alternation. In these Ss brain and body development were stunted, and the reactions to amphetamine and physostigmine were opposite to those seen in normal Ss. Results support the idea that the static organs contribute importantly to spatial orientation and suggest that early-onset vestibular defects can result in profound alterations of emotionality. (27 ref) (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

5.
Prolonged binocular optokinetic stimulation (OKS) in the rabbit induces a high-velocity negative optokinetic afternystagmus (OKAN II) that persists for several hours. We have taken advantage of this uniform nystagmus to study how changes in static head orientation in the pitch plane might influence the orientation of the nystagmus. After horizontal OKS, the rotation axis of the OKAN II remained almost constant in space as it was kept aligned with the gravity vector when the head was pitched by as much as 80 degrees up and 35 degrees down. Moreover, during reorientation, slow-phase eye velocity decreased according to the head pitch angle. Thereafter, we analyzed the space orientation of OKAN II after optokinetic stimulation during which the head and/or the OKS were pitched upward and downward. The rotation axis of OKAN II did not remain aligned with an earth vertical axis nor a head vertical axis, but it tended to be aligned with that of the OKS respace. The slow-phase eye velocity of OKAN II was also affected by the head pitch angle during OKS, because maximal OKAN II velocity occurred at the same head pitch angle as that during optokinetic stimulation. We suggest that OKAN II is coded in gravity-centered rather than in head-centered coordinates, but that this coordinate system may be influenced by optokinetic and vestibular stimulation. Moreover, the velocity attenuation of OKAN II seems to depend on the mismatch between the space-centered nystagmus rotation axis orientation and that of the "remembered" head-centered optokinetic pathway activated by OKS.  相似文献   

6.
Vestibuloocular reflex performance and adaptation were examined during vestibulocerebellar inactivation by localized lidocaine microdialysis or injection in goldfish. In the light, eye velocity perfectly compensated for head velocity (Vis-VOR) during sinusoidal yaw rotation (1/8 Hz +/- 20 degrees). In the dark, the reflex (VOR) gain was slightly reduced (gain approximately 0.8-0.9). In neither Vis-VOR nor VOR, was gain altered after 1 h of lidocaine microdialysis in the vestibulocerebellum. Before adaptation of reflex gain, the initial suppression or augmentation of Vis-VOR reflex gain produced by in-phase or out-of-phase visual-vestibular stimulation was also unaffected by cerebellar inactivation. Subsequently, 3 h of adaptive reflex training in either the in-phase or out-of-phase paradigm (acquisition phase) respectively decreased (0.30 +/- 0.09) or increased (1.60 +/- 0.08) VOR gain during artificial cerebral spinal fluid (CSF) microdialysis. However, microdialysis of lidocaine completely blocked adaptive gain changes during a 3-4 h period of continuous application. This effect was reversible because VOR gain changes were produced 1 h after lidocaine was replaced with CSF as the dialysate. After adaptive training, bilateral CSF injections (0.25 microl/side) into the vestibulocerebellum did not alter the normal retention or decay of adapted gain changes during a 3 h period in the dark (retention phase). However, injection of lidocaine into the vestibulocerebellum completely blocked retention of the adapted VOR gain returning the gain to values recorded before adaptation. In contrast to either acute or chronic surgical removal, lidocaine inactivation of the cerebellum by microdialysis did not alter either Vis-VOR and VOR behavior or interactive Vis-VOR performance over a wide range of gain extending from 0.3 to 1.4. Thus short-term VOR motor learning is a dynamic process requiring either continuous operation of brain stem cerebellar loops or, alternatively, modifiable sites within or directly influenced by the cerebellum. Our data supports the latter hypothesis, because the direct brain stem VOR pathways appear to be unaltered after cerebellar inactivation, and, hence, independent of the VOR-adapted state.  相似文献   

7.
In this article we provide evidence against a fundamental assumption of traditional theories of orientation—that gravitoinertial force is perceived. We argue that orientation is based on information that is available in patterns of motion of the organism. We further argue that perception and control of orientation depend not only on information about an organism's motions relative to the local force environment but also on information about the surface of support and about the compensatory actions of the organism. We describe these kinds of information and discuss their availability to, and across, different perceptual systems. The use of this information for the control of orientation is emphasized. We conclude with recommendations for research based on the new approach. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

8.
9.
Quantitative analysis of electro-oculographic recordings of eye movement in response to precise visual and vestibular stimuli makes possible the differentiation of three categories of vestibular syndromes due to pathological changes in three different parts of the visual vestibulo-ocular reflex arc: (1) decreased vestibulo-ocular reflex gain (e.g., decrease in slow component velocity), but normal fast components and visual-vestibular interaction (labyrinth and eighth nerve); (2) normal slow component velocity but abnormal fast components to all stimuli (pontine or medullar reticular formation); and (3) normal slow component velocity to vestibulo-ocular stimulaton but abnormal visual-vestibular interaction as well as normal fast components (visual-motor pathways or cerebellum).  相似文献   

10.
11.
Development of spatial orientation in infancy.   总被引:1,自引:0,他引:1  
The ability of infants at 6, 11, and 16 mo to keep track of their relationship to a place in space was assessed in 4 experiments with 72 Ss. Ss were trained to expect an event to occur to their right or left; they were then moved so that their view of the space was reversed. The direction in which they turned in anticipation of the event indicated whether they were coding the location egocentrically or objectively. In Exp I, a longitudinal study of 24 infants, significant shift with age from egocentric responding at 6 and 11 mo to objective responding at 16 mo was revealed, a change that data in Exp II indicated was not simply due to previous experience with the experimental space. In Exps III and IV, manipulation of the type of experience Ss had during training failed to decrease egocentric responding at 6 and 11 mo. The overall pattern indicated that a landmark had its greatest impact at 11 mo. The data support Piaget's theory that in coding location, young infants rely on past accommodations to an object rather than its relationship to other objects or the larger space. (8 ref) (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

12.
After inspection of vertical sinusoidal gratings at least three distinct types of subjective or "hallucinated" patterns can be seen on a uniform test field. One type, here called horizontal streaming (H), is already well-known from the work of MacKay. A second type (V) looks like aroughly sinusoidal grating about 1-5 octaves above the adapting spitial frequency. Under optimal conditions a second vertical component appears at about 2 octaves below the adapting frequency. The third category of aftereffect consists of diagonal lines (D) at two orientations (about +/-40 degrees from vertical). The spatial-frequency band at these two orientations appears to be fairly broad, but roughly similar to the adapting frequency. The duration and strength of D increased, while V declined, at higher adapting spatial frequencies. D and V were increasing functions of adapting contrast, while H appeared abruptly only after the highest adapting contrast. H, D, and V are thus all functionally distinct. A schematic model of cortical organization is proposed to account for these phenomena. Pattern channels selective for a given orientation are grouped together with movement channels selective for the orthogonal direction. Antagonism between channels within such "modules" accounts for the streaming effect (H). Inhibition between modules tuned to different orientations and spatial frequencies accounts for the D and V effects: after adaptation of channels in one module, neighbouring module(s) are released from inhibition to produce a spurious response which is seen as a grating-like object in the adapted part of the visual field. During flickering adaptation a "halluncinated" lattice can be seen superimposed on the adapting grating. It apparently consists of Fourier components more remote from the adapting pattern than D and V are. This disinhibitory effect is strong confirmation of the inhibitory model. The regular and highly organized matrix of channels implied by these experiments may constitute a cortical hypercolumn conducting a coarse, piecewise Fourier transformation of the retinal image.  相似文献   

13.
Knowledge of the response of the primary visual cortex to the various spatial frequencies and orientations in the visual scene should help us understand the principles by which the brain recognizes patterns. Current information about the cortical layout of spatial frequency response is still incomplete because of difficulties in recording and interpreting adequate data. Here, we report results from a study of the cat primary visual cortex in which we employed a new image-analysis method that allows improved separation of signal from noise and that we used to examine the neurooptical response of the primary visual cortex to drifting sine gratings over a range of orientations and spatial frequencies. We found that (i) the optical responses to all orientations and spatial frequencies were well approximated by weighted sums of only two pairs of basis pictures, one pair for orientation and a different pair for spatial frequency; (ii) the weightings of the two pictures in each pair were approximately in quadrature (1/4 cycle apart); and (iii) our spatial frequency data revealed a cortical map that continuously assigns different optimal spatial frequency responses to different cortical locations over the entire spatial frequency range.  相似文献   

14.
This paper reports an analysis of sex differences in cognitive test scores covering the dimensions of spatial orientation and spatial visualization in groups of 6 older men and 6 women matched for speed of performance on a maze test and level of performance on a spatial relations task. Older men were more proficient solving spatial problems using the body as a referent, whereas there was no significant difference between the sexes in imagining spatial displacement. Matched comparisons appear a useful adjunct to population research to understand the type(s) of cognitive processes where differential performance by the sexes is observed.  相似文献   

15.
Dynamics and kinematics of the angular vestibulo-ocular reflex in monkey: effects of canal plugging. J. Neurophysiol. 80: 3077-3099, 1998. Horizontal and roll components of the angular vestibulo-ocular reflex (aVOR) were elicited by sinusoidal rotation at frequencies from 0.2 Hz (60 degrees/s) to 4.0 Hz ( approximately 6 degrees/s) in cynomolgus monkeys. Animals had both lateral canals plugged (VC, vertical canals intact), both lateral canals and one pair of the vertical canals plugged (RALP, right anterior and left posterior canals intact; LARP, left anterior and right posterior canal intact), or all six semicircular canal plugged (NC, no canals). In normal animals, horizontal and roll eye velocity was in phase with head velocity and peak horizontal and roll gains were approximately 0.8 and 0.6 in upright and 90 degrees pitch, respectively. NC animals had small aVOR gains at 0.2 Hz, and the temporal phases were shifted approximately 90 degrees toward acceleration. As the frequency increased to 4 Hz, aVOR temporal gains and phases tended to normalize. Findings were similar for the LARP, RALP, and VC animals when they were rotated in the planes of the plugged canals. That is, they tended to normalize at higher frequencies. A model was developed incorporating the geometric organization of the canals and first order canal-endolymph dynamics. Canal plugging was modeled as an alteration in the low frequency 3-db roll-off and corresponding dominant time constant. The shift in the low-frequency 3-dB roll-off was seen in the temporal responses as a phase lead of the aVOR toward acceleration at higher frequencies. The phase shifted toward stimulus velocity as the frequency increased toward 4.0 Hz. By incorporating a dynamic model of the canals into the three-dimensional canal system, the spatial responses were predicted at all frequencies. Animals were also stimulated with steps of velocity in planes parallel to the plugged lateral canals. This induced a response with a short time constant and low peak velocity in each monkey. Gains were normalized for step rotation with respect to time constant as (steady state eye velocity)/(stimulus acceleration x time constant). Using this procedure, the gains were the same in canal plugged as in normal animals and corresponded to gains obtained in the frequency analysis. The study suggests that canal plugging does not block the afferent response to rotation, it merely shifts the dynamic response to higher frequencies.  相似文献   

16.
17.
To investigate whether the familial clustering of cutaneous melanoma is consistent with Mendelian inheritance of a major autosomal gene, maximum likelihood segregation analyses were performed in a population-based sample of 1,912 families ascertained through a proband with melanoma diagnosed in Queensland between 1982 and 1990. Analyses were performed with the S.A.G.E. statistical package, using the REGTL program for a binary trait with a variable age of onset. We sought medical confirmation for all family members reported to have had melanoma, and only medically verified cases among relatives were included in the analyses. The hypothesis of codominant Mendelian inheritance gave a significantly better fit to the data than either dominant or recessive Mendelian inheritance, or environmental transmission. Overall, both Mendelian inheritance of a single major gene, and purely environmental transmission were rejected (P < 0.001). In both the single major gene and environmental models, there was strong evidence of familial dependence in melanoma occurrence (P < 0.001). These results are consistent with reported genetic heterogeneity in melanoma inheritance and suggest that other familial factors, such as pigmentation, skin type, and sun exposure habits, may play an important role in the familial clustering of melanoma.  相似文献   

18.
A group of 120 male workers, employed in copperworks (mean age = 41.5 years; mean exposure duration = 17,9 years) at workposts with the highest level of exposure to lead, were covered by the study. Blood levels of the following heavy metals were measured in all workers: Pb, Cd, Mn, Cu, Zn, Ca, Mg as well as concentrations of FEP and GSH, SOD activity in erythrocytes, parameters of lipid metabolism: total cholesterol, HDL2- HDL3-cholesterol, triglycerides, lipid peroxides (LPO), and lecithin-cholesterol acyltransferase (LCAT) activity. Mean blood lead level accounted for 251,86 micrograms/l, and mean level of FEP was slightly above normal. That may indicate moderate lead deposits in smelters. Concentrations of other metals remained within normal limits. No significant disturbances in lipid metabolism were observed. Along with expected positive correlation between lead blood level and FEP, a significant negative correlation between lead and cholesterol levels as well as between FEP and serum cholesterol was found. Moreover, a significant negative correlation between FEP and serum LPO, as well as a significant positive correlation between concentration and HDL2-cholesterol level and between FEP concentration and SOD activity in erythrocytes were noted. We believe that unexpected outcome of our investigations could result from the adaptation of healthy smelters to the environmental conditions. It is assumed that further exposure could weak antioxidant mechanisms and lead, in consequence, to the manifestation of symptoms induced by harmful effect of free radicals.  相似文献   

19.
Tested the speed with which spatial information is classified into categories by asking 34 6-yr-olds, 35 10-yr-olds, 30 14-yr-olds, and 30 undergraduates to sort 6 decks of cards, each requiring a spatial judgment. Results indicate that (1) oblique discriminations required more processing time than did vertical–horizontal discriminations; (2) stimuli along the vertical axis were not processed significantly more quickly than stimuli along the horizontal axis; and (3) position variations slowed orientation discriminations, especially if the lines were of oblique orientation. The effect of position variations was particularly marked for the 6-yr-olds. The role of positional cues in spatial organization, as well as aspects of developmental changes in spatial concepts and strategies, are discussed. (French abstract) (11 ref) (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

20.
Trained 60 light- and 60 dark-reared Long-Evans hooded rats on discriminations involving angular orientation of single rectangles or pairs of rectangles. 102 other Ss were trained on a pattern (N vs. X) discrimination. No significant differences were found between visually experienced and inexperienced Ss either in their acquisition of any of the orientation problems or in their ability to generalize after training along the dimension of angular orientation. A significant difference due to rearing condition was observed for acquisition of the pattern discrimination and generalization following training. Findings are discussed in terms of further specification of the effects of visual deprivation and their implications with regard to models of shape recognition in the rat. (25 ref.) (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号