首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The occurrence of volatile organic compounds (VOCs) was studied in river water, lake water, seawater and treated wastewater in Greece from October 1998 to September 1999. The determination of 41 VOCs was performed with a Purge and Trap-Gas Chromatography-Mass Spectrometry method. Samples were collected seasonally from 10 rivers, seven lakes, three gulfs and four wastewater treatment plants. In surface water samples, 15 VOCs were detected. In wastewater samples, occurrence of 31 VOCs was observed. The results suggest that not only agricultural and industrial activity within the Greek territory, but also transboundary pollution deriving from neighbouring countries consist important sources of VOCs in surface waters of Greece. However, the measured concentrations did not in any case exceed the guideline values proposed by the EC.  相似文献   

2.
Bourgeois W  Stuetz RM 《Water research》2002,36(18):4505-4512
A chemical sensor array (consisting of 8 conducting polymers) was used to continuously monitor for the presence or absence of industrial pollutants in the headspace of wastewater generated from an on-line flow-cell. A domestic wastewater (Cranfield University sewage works) was dosed with diesel to stimulate the presence of an intermittent discharge in a wastewater influent. Response patterns between the sensors were used to detect for the presence of organic compounds in the wastewater. Correlations between the sensor response patterns or fingerprints were also analysed using principal component analysis. The results clearly demonstrate that a chemical sensor array can rapidly identify the presence of organic compounds (such as diesel) in a wastewater matrix and could be further developed to monitor for industrial pollutants at the inlet of a sewage works.  相似文献   

3.
Ultrafiltration (UF) is considered as a suitable treatment process after conventional wastewater treatment to produce reuse water. Nevertheless, fouling affects the performance of UF to a large extent. As biopolymers (mostly macro polysaccharide-like and protein-like molecules) have been identified as major foulants affecting the filterability of water in dead-end UF, the present study focuses on investigating the reversibility of biopolymer fouling occurring at different biopolymer mass loads to the membrane and under different compression conditions. UF-membrane stirred cell tests using five cycles show that filtering treated domestic wastewater leads to a significant permeability reduction due to the accumulation of biopolymers on the membrane surface and/or in the membrane pores. Although they can be removed by hydraulic backwashing, an increased mass load of biopolymers reduces the removal efficiency. This correlation was verified using a UF pilot plant filtering treated wastewater (secondary effluent or slow sand filtrate). The effect of biopolymer fouling layer deformation on its reversibility was studied using multi-cycle membrane filtration tests under different filtration pressures. The results showed that higher filtration pressures result in more compact biopolymer fouling which is more difficult to be hydraulically backwashed. This phenomenon was also confirmed by pilot-scale UF experiments.  相似文献   

4.
The quest for simple, low-cost and high-performance decentralized wastewater treatment system for domestic application in developing nations necessitated this study. Clay samples collected from different deposits in Nigeria were characterized by studying the mineralogical and geochemical composition using X-ray diffraction (XRD) and atomic absorption spectroscopy (AAS), respectively. Three major clay minerals of kaolinite, illite and smectite were identified. The geochemical studies showed the abundance of SiO2, Al2O3 and H2O+ in each of the clay samples. Performance efficiency studies were conducted to determine the best combination ratio of pebbles/soil-clay. Soil-clay fortified by pebbles in combination ratios of 1:3 (i.e. pebbles:soil-clay = 1:3 (w/w) showed the optimum water purification, while the combination 3:1 gave the least. The flow rate studies showed that the wastewater had a longer residence time in non-fortified soil-clay than in fortified soil-clay. Two modes of treatment methods were employed-single and double column treatment methods (SCT and DCT). The two methods gave effluents of good quality characteristics, but those from the DCT were of better quality. The quality of effluents also varies from one clay type to another. The quality of effluents from media containing smectite clay mineral was better than those from other columns. Repeated usage of the fortified clay column showed a decrease of pH, TS and DO, and an increase of COD when monitored over a period of 10 days.  相似文献   

5.
Choi DJ  Park H 《Water research》2001,35(16):3959-3967
For control and automation of biological treatment processes, lack of reliable on-line sensors to measure water quality parameters is one of the most important problems to overcome. Many parameters cannot be measured directly with on-line sensors. The accuracy of existing hardware sensors is also not sufficient and maintenance problems such as electrode fouling often cause trouble. This paper deals with the development of software sensor techniques that estimate the target water quality parameter from other parameters using the correlation between water quality parameters. We focus our attention on the preprocessing of noisy data and the selection of the best model feasible to the situation. Problems of existing approaches are also discussed. We propose a hybrid neural network as a software sensor inferring wastewater quality parameter. Multivariate regression, artificial neural networks (ANN), and a hybrid technique that combines principal component analysis as a preprocessing stage are applied to data from industrial wastewater processes. The hybrid ANN technique shows an enhancement of prediction capability and reduces the overfitting problem of neural networks. The result shows that the hybrid ANN technique can be used to extract information from noisy data and to describe the nonlinearity of complex wastewater treatment processes.  相似文献   

6.
Interactions between iron and sulfide in domestic wastewater from a gravity sewer were investigated with particular emphasis on redox cycling of iron and iron sulfide formation. The concentration ranges of iron and total sulfide in the experiments were 0.4-5.4mgFeL(-1) and 0-5.1mgSL(-1), respectively. During anaerobic conditions, iron reduction kinetics were investigated and reduction rates amounted on average to 1.32mgFeL(-1)d(-1). Despite the very low solubility of iron sulfide, the reduced iron reacted only partly with sulfide to produce iron sulfide, even when dissolved sulfide was in excess. When a ferric chloride solution was added to sulfide containing anaerobic wastewater, the ferric iron was quickly reduced to ferrous forms by oxidation of dissolved sulfide and the ferrous iron precipitated almost completely as iron sulfide. During aerobic conditions, iron sulfide was oxidized with a half-life period of 11.7h. The oxidation rate of iron sulfide was significantly lower than that reported for the oxidation of dissolved sulfide.  相似文献   

7.
The use of raw and treated wastewater for irrigation of crops is a common practice in Mexico. In force since January 1997, the Water Quality Norms for helminth ova refer only to the number of eggs that can be present in the irrigation water, and ignore the assessment of viability because the conventional techniques are not suitable for routine application. However, since viability is of prime importance in the epidemiology of parasitic infections, work was done for the development of a rapid and reliable method to detect a metabolic activity or a physiological characteristic related to viability. As a result, a vital staining procedure was developed and validated, and it was coupled with two rapid quantitative procedures previously assessed, therefore, permitting the determination of the total number of helminth eggs and, simultaneously, the viable and non-viable fraction. The average recovering efficiency of the rapid quantitative methods is 54% for raw wastewater and 77% for treated wastewater; the staining technique for viability is equally reliable (within the 95% confidence limits) as the conventional in vitro procedure; the overall test takes from 4 to6 h to be completed when processing up to four samples at the same time, and the cost per sample (for unrecoverable materials) ranges from US$2.50 to $4.00.  相似文献   

8.
The use of a voltammetric electronic tongue as tool for the prediction of concentration levels of certain water quality parameters from influent and effluent wastewater from a Submerged Anaerobic Membrane Bioreactor pilot plant applied to domestic wastewater treatment is proposed here. The electronic tongue consists of a set of noble (Au, Pt, Rh, Ir, and Ag) and non-noble (Ni, Co and Cu) electrodes that were housed inside a stainless steel cylinder which was used as the body of the electronic tongue system. As a previous step an electrochemical study of the response of the ions sulphate, orthophosphate, acetate, bicarbonate and ammonium was carried out in water using the electrodes contained in the electronic tongue. The second part of the work was devoted to the application of the electronic tongue to the characterization of the influent and effluent waters from the wastewater treatment plant. Partial Least Squares analysis was used to obtain a correlation between the data from the tongue and the pollution parameters measured in the laboratory such as soluble chemical oxygen demand (CODs), soluble biological oxygen demand (BODs), ammonia (NH4-N), orthophosphate (PO4-P), Sulphate (SO4-S), acetic acid (HAC) and alkalinity (Alk). A total of 28 and 11 samples were used in the training and the validation steps, respectively, for both influent and effluent water samples. The electronic tongue showed relatively good predictive power for the determination of BOD, COD, NH4-N, PO4-P, SO4-S, and Alk.  相似文献   

9.
Natural and environmental-friendly disposal of wastewater sludge is a great concern. Recently, biological treatment has played prominent roles in bioremediation of complex hydrocarbon- rich contaminants. Composting is quite an old biological-based process that is being practiced but it could not create a great impact in the minds of concerned researchers. The present study was conducted to evaluate the feasibility of the solid-state bioconversion (SSB) processes in the biodegradation of wastewater sludge by exploiting this promising technique to rejuvenate the conventional process. The Indah Water Konsortium (IWK) domestic wastewater treatment plant (DWTP) sludge was considered for evaluation of SSB by monitoring the microbial growth and its subsequent roles in biodegradation under two conditions: (i) flask (F) and (ii) composting bin (CB) cultures. Sterile and semi-sterile environments were allowed in the F and the CB, respectively, using two mixed fungal cultures, Trichoderma harzianum with Phanerochaete chrysosporium 2094 (T/P) and T. harzianum with Mucor hiemalis (T/M) and two bulking materials, sawdust (SD) and rice straw (RS). The significant growth and multiplication of both the mixed fungal cultures were reflected in soluble protein, glucosamine and color intensity measurement of the water extract. The color intensity and pH of the water extract significantly increased and supported the higher growth of microbes and bioconversion. The most encouraging results of microbial growth and subsequent bioconversion were exhibited in the RS than the SD. A comparatively higher decrease of organic matter (OM) % and C/N ratio were attained in the CB than the F, which implied a higher bioconversion. But the measurement of soluble protein, glucosamine and color intensity exhibited higher values in the F than the CB. The final pH drop was higher in the CB than the F, which implied that a higher nitrification occurred in the CB associated with a higher release of H+ ions. Both the mixed cultures performed almost equal roles in all cases except the changes in moisture content.  相似文献   

10.
Zheng X  Ernst M  Jekel M 《Water research》2009,43(1):238-59
Ultrafiltration (UF) membranes can be used after conventional wastewater treatment to produce particle free and hygienically safe water for reuse. However, membrane fouling affects the performance of UF to a large extent. Stirred cell tests with UF membrane show high flux decline filtering treated domestic wastewater. Investigation on the impact of size fractioned substances indicates that dissolved substances are major foulants affecting water filterability. Dissolved organic substances in feed and permeate samples of the stirred cell tests are analyzed by liquid chromatography with online organic carbon detection (LC-OCD). The resulting chromatograms displayed a significant difference of feed and permeate samples in the range of large molecules identified as biopolymer peak. The substances detected in this peak (mostly macro polysaccharide-like and protein-like molecules) are almost completely retained by UF membranes. Quantified investigation shows that biopolymer concentration influences filterability of corresponding water sample proportionally. The apparent magnitude of delivered biopolymer to membrane has a striking correlation with fouling resistance. The relationship was verified to be reproducible using different water samples. Mechanism analysis demonstrates that based on the delivered biopolymer load to membrane pore blocking or cake/gel fouling is the main fouling mechanism in the present experiment conditions.  相似文献   

11.
The conventional method of obtaining a detailed picture of the energy performance of a building is by the installation of a dense network of air temperature sensors. The data from all the sensors is accumulated at a central point for analysis. However, it is argued that air temperature measurement is merely a secondary indicator of energy use and a more direct method of tracking energy flow is preferable. Focussing on the types of heating system where heat is produced at a central source and pumped around the building (for example, hydronic systems), it is suggested the heating system itself can function as a low-cost distributed sensor network to directly monitor energy use, although the information retrieved is mixed in a complex way that is dependent on the topology of the distribution system. It is claimed that high-resolution information can nevertheless be extracted by mapping the acquired data to the geometry of the system and by the use of adequate computer processing power to run the physical model. A method of testing the concept in a domestic context is described as a precursor to more extensive deployment.  相似文献   

12.
高彩凤  张欢  王斌  由世俊 《暖通空调》2006,36(7):106-109
为研究办公楼装修后室内挥发性有机物的释放特性,利用活性炭吸附采样与气相色谱分析相结合的方法,跟踪监测了天津市某办公楼四个典型房间的室内污染物浓度。得出了装修后室内污染物浓度的变化规律,即污染物浓度随时间推移而降低,其间可能会由于房间温度、相对湿度和气流组织的变化而出现短暂的起伏。  相似文献   

13.
The fate of xenobiotic organic compounds in wastewater treatment plants   总被引:1,自引:0,他引:1  
Byrns G 《Water research》2001,35(10):2523-2533
The effective operation of wastewater treatment plants plays an important role in minimising the release of xenobiotic compounds into the aquatic environment. Considerable effort has been expended in developing models to quantify the overall removal and fate of these compounds in biological treatment plants. A synthesis and modification of these approaches has been made and a generalised fate model for organic compounds in an activated sludge plant is presented. The influence of the different removal mechanisms, such as sorption, volatilisation and advection for chemicals with different physico-chemical properties is investigated and the important role of biotransformation is discussed. The effect of some operating parameters has been found to have an important influence upon the concentration of xenobiotic released in the sludges and final effluent. This may have significance for a wide range of ecotoxic compounds and in particular the class of compounds increasingly recognised as having the potential to disrupt endocrine activity in some aquatic vertebrates.  相似文献   

14.
A procedure has been developed for the determination of low levels (parts-per-trillion) of 2,3,7,8-tetrachlorodibenzo-p-dioxin in treated wastewater. A combination of cleanup steps on silica, alumina, and reactant modified adsorbents yields a relatively interference-free residue when examined by gas chromatography/mass spectrometry in the selected ion monitor (SIM) mode of operation.  相似文献   

15.
The aim of the study was to demonstrate the application potential of boron-doped diamond electrodes (BDD) in electrochemical disinfection of biologically treated sewage for direct recycling of domestic wastewater. Discontinuous bulk disinfection experiments with secondary effluents and model solutions were performed to investigate the influence of operating conditions and wastewater parameters on disinfection efficiency and formation of disinfection by-products (adsorbable organically bound halogens, AOX). The inactivation rate accelerates with increasing current density caused by a faster generation of electrochemical oxidants (ECO). It could be shown that the effect of OH radicals in case of the direct electrochemical disinfection of chloride-containing secondary effluents with BDD is negligible because of their fast reaction with typical radical scavengers. The dominating role of electrochemically generated free chlorine in the disinfection process could be explicitly verified. It could be also shown that the disinfection efficiency is strongly affected by the specific wastewater parameters temperature and pH. These effects can be explained by the behaviour of the reactive species. The migration-controlled generation of ECO can be accelerated under turbulent hydrodynamic conditions. The formation of disinfection by-products (AOX) correlates with the introduced electric charge Q applied per volume and is independent of the applied current density.  相似文献   

16.
A direct analytical method for identification and determination of the individual volatile acids in raw sewage was developed. The proposed procedure is rapid, omitting tedious sample pretreatment and thus avoiding possible losses involved in steam distillation, evaporation or extraction. It consists of direct injection of raw sewage into a gas chromatograph, including Carbowax 20 M on acid washed Chromosorb W column and a flame ionization detector. Sample preparation is confined to addition of solid metaphosphoric acid to the raw sewage, and removal of precipitated proteins and suspended solids by centrifugation.The direct injection method proved to be practicable, accurate and rapid. Volatile acids content in raw municipal sewage in Haifa, Israel, was found to be in the range of 150–160 mg l−1, of which 120–125 mg l−1 was acetic acid, 30–33 mg l−1 propionic acid, 6–8 mg l−1 butyric acid, 2 mg l−1 isovaleric acid, and 0.5–1 mg l−1 valeric acid.  相似文献   

17.
This study focuses on the removal of 32 selected micropollutants (pharmaceuticals, corrosion inhibitors and biocides/pesticides) found in an effluent coming from a municipal wastewater treatment plant (MWTP) based on activated sludge. Dissolved organic matter was present, with an initial total organic carbon of 15.9 mg L−1, and a real global quantity of micropollutants of 29.5 μg L−1. The treatments tested on the micropollutants removal were: UV-light emitting at 254 nm (UV254) alone, dark Fenton (Fe2+,3+/H2O2) and photo-Fenton (Fe2+,3+/H2O2/light). Different irradiation sources were used for the photo-Fenton experiences: UV254 and simulated sunlight. Iron and H2O2 concentrations were also changed in photo-Fenton experiences in order to evaluate its influence on the degradation. All the experiments were developed at natural pH, near neutral. Photo-Fenton treatments employing UV254, 50 mg L−1 of H2O2, with and without adding iron (5 mg L−1 of Fe2+ added or 1.48 mg L−1 of total iron already present) gave the best results. Global percentages of micropollutants removal achieved were 98 and a 97% respectively, after 30 min of treatments. As the H2O2 concentration increased (10, 25 and 50 mg L−1), best degradations were observed. UV254, Fenton, and photo-Fenton under simulated sunlight gave less promising results with lower percentages of removal.The highlight of this paper is to point out the possibility of the micropollutants degradation in spite the presence of DOM in much higher concentrations.  相似文献   

18.
Sediments formation and biogeochemical properties were studied in an experimental constructed wetland site in Ukraine (“Bioplato”) for treatment of domestic effluents. The wetland, with a capacity of 50 m3 d? 1 of wastewater, consists of vertical and horizontal filtrations units with fine gravel, middle and coarse sand, a subsurface flow unit with natural wetland soil applied, and a septic tank and sludge-drying field. Macrophytes, reed (Phragmites australis), cattail (Typha latifolia) and a number of sedge species (Carex spp.) were planted in the area and dominate the average cover of 85–90%. Treatment efficiency for BOD5 and suspended solids was 93–96%, for COD – 82%, for nutrients – 27–50%, and for pathogenic microorganisms 99.3–99.6%. Sludge was sampled at each unit followed by standard laboratory analyses of its main characteristics: total organic carbon (TOC), total nutrients (N, P), contents of trace elements, abundance of pathogenic microorganisms, and general toxicity. Results confirmed that the top layer of sludge from each unit of wetland could be used as a source of fertilizers for grain and leguminous crops.  相似文献   

19.
The aim of this research is to characterize the organic matter showing endotoxicity in domestic wastewater. It is assumed that endotoxicity is caused by lipo-polysaccharide (LPS), particularly large and hydrophobic molecules. In this study, a batch experiment (decay test for 12 h) was conducted to confirm whether LPS is the cause of endotoxicity or not. 2-keto-3deoxyoctulosonic acid (KDO) was used as an indicator of presence of LPS.A size and structural characterization of several samples from raw and domestic wastewater was also carried out in order know which fractions are causing endotoxicity. Endotoxin and KDO patterns were found to be similar, peaking at the same time. Thus, organic matter showing endotoxicity, such as LPS was released in the decay test. Moreover, the organic matter released from bacteria during decay test was partly biodegradable. Results from size characterization (Molecular Weight Distribution) showed that the majority of endotoxin (up to 82%), in domestic sewage and secondary effluents,is composed of molecules larger than 100 kDa and less than 0.1 μm. Similarly, structural characterization (hydrophobic and hydrophilic) showed that the majority of endotoxin, ranging from 59% to 83% of the total endotoxicity, is hydrophobic fractions. Therefore, removing large and hydrophobic molecules from wastewater can be an effective way to achieve a significant decrease in its endotoxicity.  相似文献   

20.
Blackburne R  Yuan Z  Keller J 《Water research》2008,42(8-9):2166-2176
Nitrogen removal via nitrite, as opposed to the traditional nitrate, may be beneficial for carbon-limited biological wastewater treatment plants. However, reliable termination of nitrification at nitrite (nitritation) has proved difficult in the treatment of domestic wastewater. In this study, nitritation was attained in a sequencing batch reactor (SBR) with pre-denitrification treating domestic wastewater (total Kjeldahl nitrogen (TKN) concentration of about 43 mg NL(-1)) by aerobic duration control. The aerobic duration control strategy terminates aeration upon completion of ammonium oxidation with accumulated nitrite still remaining. The SBR was purposefully operated such that the influence of other known selection factors for nitritation was absent. The process proved effective in achieving a steady state whereby over 80% nitritation was sustained. Investigation of the cause of nitritation by a calibrated ammonium and nitrite oxidation model showed aerobic duration control as the key factor leading to nitritation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号