共查询到19条相似文献,搜索用时 46 毫秒
1.
由于异常定义的模糊性和真实数据的复杂性,视频异常检测是智能视频监控中最具挑战性的问题之一。基于自动编码器(AE)的帧重建(当前或未来帧)是一种流行的视频异常检测方法。使用在正常数据上训练的模型,异常场景的重建误差通常比正常场景的重建误差大得多。但是,这类方法忽略了正常数据本身的内部结构,效率较低。基于此,提出了一种深度自动编码高斯混合模型(DAGMM)。首先利用深度自动编码器获得输入视频片段的生成低维表示和重构误差,并将其进一步输入高斯混合模型(GMM)。而估计网络则通过高斯混合模型预测能量概率,然后通过能量密度概率判断异常。DAGMM以端到端的方式同时联合优化深度自动编码器和GMM的参数,能够平衡自动编码重建、低维表示的密度估计和正则化,泛化能力强。在两个公共基准数据集上的实验结果表明,DAGMM达到了现有最高技术发展水平,在UCSD Ped2和ShanghaiTech两个数据集上分别取得了95.7%和72.9%的帧级AUC。 相似文献
2.
3.
4.
针对复杂场景下远程视频监控图像异常检测困难、传统算法功能单一(仅针对某种特定场景或某种异常图像进行检测)等问题,提出一种基于深度学习的全自动远程视频异常图像检测方法。首先采用Xavier方法对自行设计的卷积神经网络(Convolutional Neural Network,CNN)的参数进行初始化,然后将标准化后的视频差分图送入CNN的输入层,通过特征提取及下采样,最后在CNN的输出层获得远程视频异常图像检测结果。实验结果表明,该方法可以对远程视频监控中突然出现遮挡、模糊和场景切换等多种异常同时进行实时在线检测,准确率可达88.75%。 相似文献
5.
6.
视频异常检测由于可以高效、低成本地维护公共安全,在国家安防、医疗监护中发挥着重要作用.基于重构的深度自编码网络异常检测方法因其强大的表示能力而得到了广泛的研究.然而,自编码网络通常也可以成功地重建异常行为,从而导致异常行为的漏检.针对这一问题,提出了一种伪异常引导的卷积自编码网络视频异常检测方法,模型使用3D卷积提取视频时空特征.首先,通过正常数据模拟异常数据分布生成伪异常,提出了两种生成伪异常的方法:基于跳帧的方法和基于补丁的方法;然后,使用正常数据和生成的伪异常数据训练模型,训练时较好地重建正常数据同时较差地重建伪异常数据,由此模型被鼓励为限制异常数据的重建;最后,在UCSD-Ped2、Avenue和ShanghaiTech三个公共视频异常检测数据集上与其他基于重建的模型进行比较,其检测精度获得了有效提升. 相似文献
7.
视频中的异常检测是一个具有挑战性的计算机视觉问题。现有的最先进视频异常检测方法主要集中在深度神经网络的结构设计上,以获得性能改进。与主要研究趋势不同,本文侧重于将集成学习和深度神经网络相结合,提出了一种基于集成生成对抗网络(Generative Adversarial Networks,GAN)的方法。在所提出的方法中,一组生成器和一组判别器一起训练,因此每个生成器可以从多个判别器获得反馈,反之亦然。与单个GAN相比,集成GAN可以更好地对正常数据的分布进行建模,从而更好地检测异常。在两个公开数据集上测试了所提出的方法性能。结果表明,集成学习显著提高了单个检测模型的性能,在两个数据集上比现有最近方法分别超过0.4%和0.3%的帧级AUC。 相似文献
8.
徐晓 《电子技术与软件工程》2023,(6):193-197
本文对基于卷积神经网络的视频异常检测算法进行了深入研究和系统梳理:首先,总结了视频异常检测研究意义及基本流程;其次,面向视频异常检测三个关键步骤(场景目标感知、检测模型学习、异常目标推断)分类概述了当前提出的相关算法;最后,讨论和展望了本领域未来重点研究方向。 相似文献
9.
视频异常行为的检测对保障公共安全至关重要,对基于深度学习的异常行为检测算法进行了分类与总结.首先,介绍了异常行为检测的整体流程.然后,根据神经网络训练的方式,从有监督学习、弱监督学习和无监督学习三个方面论述了深度学习在异常行为检测领域的发展与应用,同时分析了不同训练方式的优缺点.最后,介绍了常用数据集以及性能评估准则,... 相似文献
10.
构建了利用交通监控视频对车辆异常行为进行检测的系统框架.使用改进Surendra背景差分与三帧差分相结合的算法进行车辆目标检测,结合CamShift算法与Kalman滤波器进行车辆目标跟踪,提取车辆质心绘制运动轨迹,针对车辆运动方向判别、违章变道、调头等行为提出了检测方法.实验结果表明,提出的交通监控视频中的车辆异常行为检测系统具有较高的实时性与准确性,部署简易快速,维护成本低廉,可以满足当今智能交通系统日益增长的需求. 相似文献
11.
采用集成H.264硬件编解码视频处理单元Hi3512来设计视频监控系统。并探讨行人目标的自动侦测问题。在对视频图像进行形态学分析的基础上,利用背景差方法实现运动目标区域的粗提取,通过阴影去除算法实现运动目标的精确定位,再利用连续均值量化变换(SuccessiveMeanQuantizafionTransform,SMQT)算法实现运动区域灰度图像的增强处理,然后利用SNoW(SparseNetworkofWinnows)分类算法实现行人及其人脸部位的侦测。实验结果表明,所采用方法能够自动检测出监控区域的行人目标及其面部信息,可有效地应用于无人值守视频监控场合。 相似文献
12.
13.
《Journal of Visual Communication and Image Representation》2014,25(8):1865-1877
Camera tampering may indicate that a criminal act is occurring. Common examples of camera tampering are turning the camera lens to point to a different direction (i.e., camera motion) and covering the lens by opaque objects or with paint (i.e., camera occlusion). Moreover, various abnormalities such as screen shaking, fogging, defocus, color cast, and screen flickering can strongly deteriorate the performance of a video surveillance system. This study proposes an automated method for rapidly detecting camera tampering and various abnormalities for a video surveillance system. The proposed method is based on the analyses of brightness, edge details, histogram distribution, and high-frequency information, making it computationally efficient. The proposed system runs at a frame rate of 20–30 frames/s, meeting the requirement of real-time operation. Experimental results show the superiority of the proposed method with an average of 4.4% of missed events compared to existing works. 相似文献
14.
15.
A fast algorithm to detect motion in the compressed domain for video surveillance is presented. The algorithm partially decompresses the video bit stream and performs motion detection from its quantised discrete cosine transform coefficients. The very low computational cost makes this algorithm very useful when real-time motion detection has to be performed simultaneously in several video bit streams 相似文献
16.
Chen Li Peng Xiaoping Tian Jing Liu Jiaxiang 《Multidimensional Systems and Signal Processing》2018,29(4):1895-1904
Multidimensional Systems and Signal Processing - Traffic surveillance video is recorded in uncontrolled outdoor scenarios. If the camera view gets obstructed by the leaves, the video will fail to... 相似文献
17.
Jie Ren Ming Xu Jeremy S. Smith Shi Cheng 《Multidimensional Systems and Signal Processing》2016,27(4):1007-1029
For the robust detection of pedestrians in intelligent video surveillance, an approach to multi-view and multi-plane data fusion is proposed. Through the estimated homography, foreground regions are projected from multiple camera views to a reference view. To identify false-positive detections caused by foreground intersections of non-corresponding objects, the homographic transformations for a set of parallel planes, which are from the head plane to the ground, are applied. Multiple features including occupancy information and colour cues are extracted from such planes for joint decision-making. Experimental results on real world sequences have demonstrated the good performance of the proposed approach in pedestrian detection for intelligent visual surveillance. 相似文献
18.
Rongguo Zhang Xiaojun Liu Jing Hu Kai Chang Kun Liu 《Signal, Image and Video Processing》2017,11(5):841-848
Moving object detection and extraction are widely used in video surveillance and image processing. In this paper, we present a fast method for moving object detection. We use weights of the Gaussian distribution as decision factors, update parameters of the Gaussian mixture model if its values are smaller than that of those not belonging to the background; otherwise, no updates are done. It improves the existing methods by updating the Gaussian mixture model selectively. Experimental results on various scenes of video surveillance show that computation time of the proposed method is reduced. 相似文献
19.
Surveillance cameras are widely used to provide protection and security; also their videos are used as strong evidences in the courts. Through the availability of video editing tools, it has become easy to distort these evidences. Sometimes, to hide the traces of forgery, some post-processing operations are performed after editing. Hence, the authenticity and integrity of surveillance videos have become urgent to scientifically validate. In this paper, we propose inter-frame forgeries (frame deletion, frame insertion, and frame duplication) detection system using 2D convolution neural network (2D-CNN) of spatiotemporal information and fusion for deep automatically feature extraction; Gaussian RBF multi-class support vector machine (RBF-MSVM) is used for classification process. The experimental results show that the efficiency of the proposed system for detecting all inter-frame forgeries, even when the forged videos have undergone additional post-processing operations such as Gaussian noise, Gaussian blurring, brightness modifications and compression. 相似文献