共查询到10条相似文献,搜索用时 31 毫秒
1.
为了从单幅低分辨率(LR)图像恢复出高分辨率(H R)图像,提出了一种应用正则化稀疏表示和基于机器学习 的超分辨率(SR)图像恢复算法。构造了一种基于稀疏表示的SR凸变模型,为了提高 恢复效果,针对模型 提出了两种稀疏正则化约束条件,一是将分类效果更好的图表拉普拉斯作为正则化约束条件 ,从而找到与 输入LR图像块在结构上最接近的学习样本;另一种是针对冗余的学习样本进行约 束,保证了图像边 缘的锐利。将输入的每一块LR图像应用正则化稀疏表示,经过学习得到与之对应的HR图像块 , 最终得到整幅HR图像。试验结果表明,算法恢复出的HR图像峰值信噪比(PSNR )值较双三次插值算法最高提升约2dB,主观目视清晰、边缘锐利。 相似文献
2.
为了保持高光谱(HS)超分辨率重建过程中的频谱一致性和边缘锐度,提出一种基于空间谱结合非局部相似性的超分辨率重建算法。首先,使用HS图像生成模型,采用稀疏正则化解决全色(PAN)图像和HS图像重建的病态问题求逆;然后分析了从高空间分辨率到低空间分辨率数据生成的丰度系数映射;最后利用非局部相似性,设计空间谱联合正则化项。实验结果表明,本文算法重建图像在PSNR,SSIM和FSIM方面明显高于其他优秀算法,在SAM和ERGAS方面明显低于其他优秀算法,在光谱失真方面丢失最少,仅有2%-3%,低于其他算法30%左右,且重建效果更加清晰自然。 相似文献
3.
《电子技术与软件工程》2016,(18)
目前超分辨率的研究分成静态图像超分辨率和动态图像超分辨率两大类,静态图像超分辨率是指利用单张低分辨率图像内容来重建出高分辨率图像,本质上高分辨率图像的高频成分不能由原有低频成分算出,故如何补足高频成分以避免模糊现象是提升视觉质量的关键也是研究重点。图像去噪和超分辨率的目的是为了解决数字图像分辨率不足所提出的技术。这个技术主要是应用在某些只能得到单张低分辨率图像的场合,利用仅有的一张低分辨率图像来产生应用上所需的高分辨率图像。稀疏表示作为一种重要的数据编码与表达方式,不仅在人类的视觉认知机理上具有明确的理论依据,而且在信号表达与重建理论方面得到了严格的证明和推导。本文主要采用稀疏表示理论,对图像去噪和超分辨率重建的相关技术与算法进行研究。 相似文献
4.
5.
本文在稀疏编码的基础上,对红外图像特性进行分析,提出了一种基于结构稀疏化的红外图像超分辨率重建算法。该算法将稀疏作为先验知识,通过对稀疏进行结构化编组,学习字典中高能量的区域,通过纹理代价函数和结构代价函数来实现图像的超分辨率重建。实验结果表明,本文算法较传统的稀疏编码方法在PSNR方面提高4-5dB,重建后的图像更加清晰,背景层次感更强。 相似文献
6.
基于稀疏表示的超分辨率图像重建 总被引:2,自引:2,他引:0
针对单幅低分辨率图像的超分辨率重建,提出一种基于稀疏表示的改进算法。通过联合输入低分辨率图像块和对应生成的高分辨率图像块,求解其在高低分辨率字典对上的稀疏表示系数,再将系数与高分辨率字典结合,修正输出的高分辨率图像块。仿真实验表明,文中提出的算法有效提升了重建图像的质量。 相似文献
7.
8.
9.
10.
基于学习的超分辨率算法通过一组训练样例来学习一个字典,并从该字典中合成低分辨率图像中丢失的高频信息,最终得到相应的高分辨率图像。介绍了几种常用的基于学习的超分辨率算法,并提出了一种新的算法:基于自适应字典稀疏表示的超分辨率算法。实验结果表明,该方法在主观与客观上均具有较好的重建效果。 相似文献