共查询到18条相似文献,搜索用时 62 毫秒
1.
为了从单幅低分辨率(LR)图像恢复出高分辨率(H R)图像,提出了一种应用正则化稀疏表示和基于机器学习 的超分辨率(SR)图像恢复算法。构造了一种基于稀疏表示的SR凸变模型,为了提高 恢复效果,针对模型 提出了两种稀疏正则化约束条件,一是将分类效果更好的图表拉普拉斯作为正则化约束条件 ,从而找到与 输入LR图像块在结构上最接近的学习样本;另一种是针对冗余的学习样本进行约 束,保证了图像边 缘的锐利。将输入的每一块LR图像应用正则化稀疏表示,经过学习得到与之对应的HR图像块 , 最终得到整幅HR图像。试验结果表明,算法恢复出的HR图像峰值信噪比(PSNR )值较双三次插值算法最高提升约2dB,主观目视清晰、边缘锐利。 相似文献
2.
为了保持高光谱(HS)超分辨率重建过程中的频谱一致性和边缘锐度,提出一种基于空间谱结合非局部相似性的超分辨率重建算法。首先,使用HS图像生成模型,采用稀疏正则化解决全色(PAN)图像和HS图像重建的病态问题求逆;然后分析了从高空间分辨率到低空间分辨率数据生成的丰度系数映射;最后利用非局部相似性,设计空间谱联合正则化项。实验结果表明,本文算法重建图像在PSNR,SSIM和FSIM方面明显高于其他优秀算法,在SAM和ERGAS方面明显低于其他优秀算法,在光谱失真方面丢失最少,仅有2%-3%,低于其他算法30%左右,且重建效果更加清晰自然。 相似文献
3.
《电子技术与软件工程》2016,(18)
目前超分辨率的研究分成静态图像超分辨率和动态图像超分辨率两大类,静态图像超分辨率是指利用单张低分辨率图像内容来重建出高分辨率图像,本质上高分辨率图像的高频成分不能由原有低频成分算出,故如何补足高频成分以避免模糊现象是提升视觉质量的关键也是研究重点。图像去噪和超分辨率的目的是为了解决数字图像分辨率不足所提出的技术。这个技术主要是应用在某些只能得到单张低分辨率图像的场合,利用仅有的一张低分辨率图像来产生应用上所需的高分辨率图像。稀疏表示作为一种重要的数据编码与表达方式,不仅在人类的视觉认知机理上具有明确的理论依据,而且在信号表达与重建理论方面得到了严格的证明和推导。本文主要采用稀疏表示理论,对图像去噪和超分辨率重建的相关技术与算法进行研究。 相似文献
4.
5.
本文在稀疏编码的基础上,对红外图像特性进行分析,提出了一种基于结构稀疏化的红外图像超分辨率重建算法。该算法将稀疏作为先验知识,通过对稀疏进行结构化编组,学习字典中高能量的区域,通过纹理代价函数和结构代价函数来实现图像的超分辨率重建。实验结果表明,本文算法较传统的稀疏编码方法在PSNR方面提高4-5dB,重建后的图像更加清晰,背景层次感更强。 相似文献
6.
针对单幅低分辨率图像的超分辨率重建,提出一种基于稀疏表示的改进算法。通过联合输入低分辨率图像块和对应生成的高分辨率图像块,求解其在高低分辨率字典对上的稀疏表示系数,再将系数与高分辨率字典结合,修正输出的高分辨率图像块。仿真实验表明,文中提出的算法有效提升了重建图像的质量。 相似文献
7.
8.
9.
10.
基于学习的超分辨率算法通过一组训练样例来学习一个字典,并从该字典中合成低分辨率图像中丢失的高频信息,最终得到相应的高分辨率图像。介绍了几种常用的基于学习的超分辨率算法,并提出了一种新的算法:基于自适应字典稀疏表示的超分辨率算法。实验结果表明,该方法在主观与客观上均具有较好的重建效果。 相似文献
11.
通过研究帧间自相似性对图像重建的影响,提出一种自相似性约束的单视频稀疏超分辨率重建算法,以达到保持图像局部结构完整性的同时有效去噪的目的。该算法运用主成分分析PCA训练出适应图像不同局部结构的分类词典;通过帧间光流场的粗略运动估计和帧内帧间的精确块匹配,搜索自相似信息,运用非局部均值NLM滤波,并以此约束稀疏模型。仿真实验表明,提出的算法无论是客观指标,还是主观视觉上都超过了进行比较的几种分辨率提高算法。 相似文献
12.
To make use of the prior knowledge of the image more effectively and restore more details of the edges and structures, a novel sparse coding objective function is proposed by applying the principle of the non-local similarity and manifold learning on the basis of super-resolution algorithm via sparse representation. Firstly, the non-local similarity regularization term is constructed by using the similar image patches to preserve the edge information. Then, the manifold learning regularization term is constructed by utilizing the locally linear embedding approach to enhance the structural information. The experimental results validate that the proposed algorithm has a significant improvement compared with several super-resolution algorithms in terms of the subjective visual effect and objective evaluation indices. 相似文献
13.
针对红外图像序列中目标与背景的对比度低、灰度特征易受噪声影响等问题,提出了一种基于稀疏表示模型的红外目标跟踪算法。在粒子滤波的理论框架基础之上,采用目标在超完备字典中的稀疏表示作为观测模型,对红外目标进行描述,从而利用了图像的稀疏表示本身对噪声和遮挡不敏感的特性,可以有效地减弱背景杂波和噪声对跟踪算法的不利影响。此外,采用了一种在线学习的方法来完成对超完备字典中目标子空间的更新,使其不断地适应背景杂波、光照等各类因素引起的目标外观变化。实验结果表明所提出的算法是稳健和有效的。 相似文献
14.
Super-resolution reconstruction technology has important scientific significance and application value in the field of image processing by performing image restoration processing on one or more low-resolution images to improve image spatial resolution. Based on the SCSR algorithm and VDSR network, in order to further improve the image reconstruction quality, an image super-resolution reconstruction algorithm combined with multi-residual network and multi-feature SCSR(MRMFSCSR) is proposed. Firstly, at the sparse reconstruction stage, according to the characteristics of image blocks, our algorithm extracts the contour features of non-flat blocks by NSCT transform, extracts the texture features of flat blocks by Gabor transform, then obtains the reconstructed high-resolution (HR) images by using sparse models. Secondly, according to improve the VDSR deep network and introduce the feature fusion idea, the multi-residual network structure (MR) is designed. The reconstructed HR image obtained by the sparse reconstruction stage is used as the input of the MR network structure to optimize the high-frequency detail residual information. Finally, we can obtain a higher quality super-resolution image compared with the SCSR algorithm and the VDSR algorithm. 相似文献
15.
In view of the problems of inefficient in low SNR and less snapshots when using existing sources number estimation related algorithms,a new algorithm based on e1sparse regularization under space stationary noise was proposed to estimate the number of signal sources.The algorithm estimated the sources number by using the sparse representation of eigenvalues vectors with the suitable regularization parameter.Theoretical analysis and simulation results show that the algorithm can realize an accurate sources number estimation in low SNR and less snapshots. 相似文献
16.
针对自适应稀疏表示去噪算法在对图像进行去噪时运行时间较长,得到结果过于平滑的问题,研究了基于相异性阈值的改进自适应稀疏表示去噪算法,在改进算法中,计算当前提取的图像块与前一个图像块之间的相异性度量,并与阈值进行比较,低于阈值则认为两者具有相同的稀疏表示向量和表示误差,不需要对当前块再执行计算从而减少运行时间,高于阈值则认为当前块包含了边缘区域,记录其位置,在重构去噪图像时予以保护,以减少图像边缘信息的损失.对毫米波图像的去噪实验结果证实了改进算法的有效性. 相似文献
17.
Image quality assessment (IQA) is a fundamental problem in image processing. While in practice almost all images are represented in the color format, most of the current IQA metrics are designed in gray-scale domain. Color influences the perception of image quality, especially in the case where images are subject to color distortions. With this consideration, this paper presents a novel color image quality index based on Sparse Representation and Reconstruction Residual (SRRR). An overcomplete color dictionary is first trained using natural color images. Then both reference and distorted images are represented using the color dictionary, based on which two feature maps are constructed to measure structure and color distortions in a holistic manner. With the consideration that the feature maps are insensitive to image contrast change, the reconstruction residuals are computed and used as a complementary feature. Additionally, luminance similarity is also incorporated to produce the overall quality score for color images. Experiments on public databases demonstrate that the proposed method achieves promising performance in evaluating traditional distortions, and it outperforms the existing metrics when used for quality evaluation of color-distorted images. 相似文献