共查询到20条相似文献,搜索用时 62 毫秒
1.
由于视频数据在时空维度上具有复杂和冗余的信息。针对这个问题,提出运动模块,该模块基于时空特征去计算像素特征之间的时空差异。将动态的时空差异分解为两个分支进行处理,一个分支用于修正相邻帧间特征差上的时空位移,另一个分支用于捕获此时间差上的上下文信息。在当前时间差中,对时空差异的像素点的概率分布进行建模。结果表明,在尽量不影响计算量(flops)与参数量的情况下,运动模块提高了视频识别任务方面的性能,并在公共数据集上证实了其有效性和效率。 相似文献
2.
目的 在人体行为识别研究中,利用多模态方法将深度数据与骨骼数据相融合,可有效提高动作的识别率。针对深度图像信息数据量大、冗余度高等问题,提出一种通过获取关键时程信息动作帧序列降低冗余的算法,即质心运动路径松弛算法,并根据不同模态数据的特点,提出一种新的时空特征表示方法。方法 质心运动路径松弛算法根据质心在相邻帧之间的运动距离,计算图像差分后获得的活跃部分的相似系数,然后剔除掉相似度高的帧,获得足以表达行为的关键时程信息。根据图像动态部分的变化特性、人体各部分在运动中的协同性和局部显著性特征构建一种新的时空特征表示方法。结果 在MSR-Action3D数据集上对本文方法的效果进行验证。在3个子集中进行交叉验证的平均分类识别率为95.743 2%,分别比Multi-fused,CovP3DJ,D3D-LSTM(densely connected 3DCNN and long short-term memory),Joint Subset Selection方法高2.443 2%,4.763 2%,0.343 2%,0.213 2%。本文方法在使用完整数据集的扩展实验中进行交叉验证的分类识别... 相似文献
3.
《计算机应用与软件》2017,(2)
由于计算开销大等原因,基于RGB视频和人工特征的行为识别方法在近些年的研究进展比较缓慢。相对于RGB视频,深度视频能提取运动物体的几何结构信息,不会随着光线的变化而变化,因此在视频分割、行为识别等视觉任务中比RGB视频具有更好的区分性。以深度视频中的关节运动信息为基础,提出一种简单而有效的人体行为识别方法。首先,根据深度视频中人体关节信息分别提取表示关节之间角度和相对位置的2个特征向量,然后使用LIBLINEAR分类器分别对提取的2个特征向量进行分类识别,最后,通过融合其分类结果得到最终的行为识别结果。该提取的特征仅包括关节间的相对位置和角度信息,不会因视角的变化而变化,具有一定的视角不变性。实验结果表明,所提出方法在UTKinect-Action3D数据集上能够获得与当前最好方法一致的识别效果,而且该方法具有很低的时间开销,实时性好。 相似文献
4.
5.
深度学习是机器学习中的一个新的研究领域。通过深度学习的方法构建深度网络来抽取特征是目前目标和行为识别中得到关注的研究方向。为引起更多计算机视觉领域研究者对深度学习进行探索和讨论,并推动目标和行为识别的研究,本文对深度学习及其在目标和行为识别中的新进展给予了概述。本文先介绍深度学习领域研究的基本状况、主要概念和原理;然后介绍近期利用深度学习在目标和行为识别应用中的一些新进展;最后阐述了深度学习与神经网络之间的关系,深度学习的优缺点,以及目前深度学习理论需要解决的主要问题。这对拟将深度学习应用于目标和行为识别的研究人员应有所帮助。 相似文献
6.
7.
在视频理解任务中,人体行为识别是一个重要的研究内容,但视频序列中存在时空信息融合困难、准确率低等问题。针对这些问题,提出一种基于时空信息融合的双流时空残差卷积网络模型。将视频分段采样提取RGB图像和光流图像,并将其输入到双流时空残差网络,通过设计的时空残差模块提取视频的深度时空特征,将每个视频片段的类别结果加权融合得到行为类别。提出的双流时空残差模块引入了少量的三维卷积和混合注意力机制,能够同时获取不同尺度的时空信息并且抑制无效信息,可以有效平衡时空信息的捕捉和计算量问题,并且提升了精度。实验基于TSN网络模型,在UCF101数据集上进行验证,实验结果表明提出的模型比原TSN网络模型的精准度提高了0.9个百分点,有效地提高了网络的时空信息捕获效率。 相似文献
8.
《计算机应用与软件》2017,(4)
为精确定位候选目标,提高目标识别效果,提出一种融合图像边界信息和深度信息的目标识别方法,该方法可以产生数量更少、定位更准确的图像候选目标。然后提取深度学习特征,通过支持向量机分类模型,实现目标识别。在两个常用数据集上进行对比实验显示,与Baseline和选择性搜索等方法相比,该方法显著地提高了目标识别的性能。 相似文献
9.
10.
人体行为识别中的关键问题是如何构建时空特征的提取和分类网络.针对目前提取的时空特征尺度单一、网络结构复杂等问题,本文提出一种结合注意力机制和多尺度时空信息的卷积网络(Multiscale Channels separation Spatiotemporal convolu-tion Network,MCST-Net).... 相似文献
11.
基于累积边缘图像的现实人体动作识别 总被引:2,自引:0,他引:2
为了从现实环境下识别出人体动作,本文研究了从无约束视频中提取特征表征人体动作的问题. 首先,在无约束的视频上使用形态学梯度操作消除部分背景,获得人体的轮廓形状; 其次,提取某一段视频上每一帧形状的边缘特征,累积到一幅图像中,称之为累积边缘图像 (Accumulative edge image, AEI); 然后,在该累积边缘图像上计算基于网格的方向梯度直方图(Histograms of orientation gradients, HOG),形成特征向量表征人体的动作, 送入分类器进行分类. YouTube数据集上的实验结果表明,本文的方法比其他方法更加有效. 相似文献
12.
本文将时间序列理论成功应用于阵列传感器信息融合和模式识别中,用AR(1)模型针对三个样本对不同传感器的响应信号进行建模,用Durbin-Levinson方法估计出AR(1)模型的自回归参数 ,依据不同的样本数据得到不同的模型参数,不同的参数即融合了不同样本的特征信息.实验结果表明该方法有效的解决了工程实际问题,对时间序列理论在信息融合和模式识别中的应用有一定的参考价值. 相似文献
13.
基于多阶信息融合的行为识别方法研究 总被引:2,自引:0,他引:2
双流卷积神经网络能够获取视频局部空间和时间特征的一阶统计信息, 测试阶段将多个视频局部特征的分类器分数平均作为最终的预测. 但是, 一阶统计信息不能充分建模空间和时间特征分布, 测试阶段也未考虑使用多个视频局部特征之间的更高阶统计信息. 针对这两个问题, 本文提出一种基于二阶聚合的视频多阶信息融合方法. 首先, 通过建立二阶双流模型得到视频局部特征的二阶统计信息, 与一阶统计信息形成多阶信息. 其次, 将基于多阶信息的视频局部特征分别进行二阶聚合, 形成高阶视频全局表达. 最后, 采用两种策略融合该表达. 实验表明, 本文方法能够有效提高行为识别精度, 在HMDB51和UCF101数据集上的识别准确率比双流卷积神经网络分别提升了8 % 和2.1 %, 融合改进的密集点轨迹(Improved dense trajectory, IDT) 特征之后, 其性能进一步提升. 相似文献
14.
行为识别在普适计算领域有着极大的应用前景,可广泛应用于医疗监护、智能家居/办公、商业服务等方面.其中基于传感器的行为识别因其分布范围广、不具侵扰性等优点,已成为目前的研究热点之一.采用机器学习理论和方法,提出了一种基于多模传感信息感知和融合的行为识别层次框架.该框架综合加速度和无线网络信号两种传感器信息、利用多种基于融合的识别方法,能同时解决“用户在哪里”、“用户在做什么”、“用户将要去做什么”等行为相关问题.采用智能手机作为实验平台,利用其内置的多种传感器收集用户的行为信息,更符合普适计算的发展趋势.最后通过实际采集的数据和大量的实验说明了各种方法的有效性. 相似文献
15.
司法人工智能中主要挑战性问题之一是案情关键要素识别,现有方法仅将案情要素作为一个命名实体识别任务,导致识别出的多数信息是无关的.另外,也缺乏对文本的全局信息和词汇局部信息的有效利用,导致要素边界识别的效果不佳.针对这些问题,提出一种融合全局和局部信息的关键案情要素识别方法.所提方法首先利用BERT模型作为司法文本的输入共享层以提取文本特征.然后,在共享层之上建立司法案情要素识别、司法文本分类(全局信息)、司法中文分词(局部信息)这3个子任务进行联合学习模型.最后,在两个公开数据集上测试所提方法的效果,结果表明:所提方法 F1值均超过了现有的先进方法,提高了要素实体分类的准确率并减少了识别边界错误问题. 相似文献
16.
最近,基于骨架的动作识别研究受到了广泛关注.因为图卷积网络可以更好地建模非规则数据的内部依赖,ST-GCN (spatial temporal graph convolutional network)已经成为该领域的首选网络框架.针对目前大多数基于ST-GCN的改进方法忽视了骨架序列所蕴含的几何特征.本文利用骨架关节几何特征,作为ST-GCN框架的特征补充,其具有视觉不变性和无需添加额外参数学习即可获取的优势,进一步地,利用时空图卷积网络建模骨架关节几何特征和早期特征融合方法,构成了融合几何特征的时空图卷积网络框架.最后,实验结果表明,与ST-GCN、2s-AGCN和SGN等动作识别模型相比,我们提出的框架在NTU-RGB+D数据集和NTU-RGB+D 120数据集上都取得了更高准确率的效果. 相似文献
17.
基于深度学习的人体行为识别算法综述 总被引:10,自引:0,他引:10
人体行为识别和深度学习理论是智能视频分析领域的研究热点, 近年来得到了学术界及工程界的广泛重视, 是智能视频分析与理解、视频监控、人机交互等诸多领域的理论基础. 近年来, 被广泛关注的深度学习算法已经被成功运用于语音识别、图形识别等各个领域.深度学习理论在静态图像特征提取上取得了卓著成就, 并逐步推广至具有时间序列的视频行为识别研究中. 本文在回顾了基于时空兴趣点等传统行为识别方法的基础上, 对近年来提出的基于不同深度学习框架的人体行为识别新进展进行了逐一介绍和总结分析; 包括卷积神经网络(Convolution neural network, CNN)、独立子空间分析(Independent subspace analysis, ISA)、限制玻尔兹曼机(Restricted Boltzmann machine, RBM)以及递归神经网络(Recurrent neural network, RNN)及其在行为识别中的模型建立, 对模型性能、成果进展及各类方法的优缺点进行了分析和总结. 相似文献
18.
对违建场地的检测方法主要是通过人工对无人机航拍视频进行检查,存在检测精度低、识别性能差、工作效率低的问题。提出一种结合空间变换网络与Fast RCNN的生成对抗网络ASTN-Fast RCNN,通过深度学习与无人机航拍视频相结合自动识别检测处在建设初期的违建场地。将空间变换网络作为生成器,生成Fast RCNN目标检测器难以识别的旋转形变样本,并通过目标检测器与生成器的对抗式训练,提高检测器的鲁棒性。实验结果表明,该方法能够有效提高对无人机航拍违建场地的识别性能。 相似文献
19.
分布式入侵检测与信息融合方法 总被引:1,自引:0,他引:1
该文将入侵检测技术和信息融合技术相结合,针对大型异构网络提出了基于Internet的IDS即CyberIDS的概念,给出了CyberIDS的体系结构和相关融合问题,并提出了分布式检测的信息融合方法,以及设计和实现CyberIDS的相关融合算法,从而为新一代IDS的设计和开发奠定了基础。 相似文献
20.
为解决现有机器人装配学习过程复杂且对编程技术要求高等问题,提出一种基于前臂表面肌电信号和惯性多源信息融合的隐式交互方式来实现机器人演示编程.在通过演示学习获得演示人的装配经验的基础上,为提高对装配对象和环境变化的自适应能力,提出了一种多工深度确定性策略梯度算法(M-DDPG)来修正装配参数,在演示编程的基础上,进行强化学习确保机器人稳定执行任务.在演示编程实验中,提出一种改进的PCNN(并行卷积神经网络),称作1维PCNN(1D-PCNN),即通过1维的卷积与池化过程自动提取惯性信息与肌电信息特征,增强了手势识别的泛化性和准确率;在演示再现实验中,采用高斯混合模型(GMM)对演示数据进行统计编码,利用高斯混合回归(GMR)方法实现机器人轨迹动作再现,消除噪声点.最后,基于Primesense Carmine摄像机采用帧差法与多特征图核相关滤波算法(MKCF)的融合跟踪算法分别获取X轴与Y轴方向的环境变化,采用2个相同的网络结构并行进行连续过程的深度强化学习.在轴孔相对位置变化的情况下,机械臂能根据强化学习得到的泛化策略模型自动对机械臂末端位置进行调整,实现轴孔装配的演示学习. 相似文献