共查询到19条相似文献,搜索用时 93 毫秒
1.
超透镜是一种由二维亚波长阵列结构表面所设计的透镜,其对光场中振幅、相位和偏振的调控能力较灵活,同时具有低损耗、易集成、超轻薄等优点,近些年引起了科研人员广泛的研究兴趣。然而在大多数情况下,针对特定波长设计的超透镜会遭受较大的色差,从而限制了其在多波长或宽带应用中的成像作用。超透镜因其二维平面结构引入了新的自由度,在对色差的消除上体现了新的潜力。文中报道了多种不同的消色差超透镜设计及其消色差调控机理,并对现有的消色差超透镜从调制波段类型进行了分类,如对离散波长的和对连续波长的消色差超表面透镜,后者又可从工作模式上分类为透射型和反射型,最后介绍了超透镜阵列在成像上的应用以及其在大景深宽带消色差器件上的前景。 相似文献
2.
基于超构透镜的太赫兹成像系统因紧凑的体积受到广泛关注。现有太赫兹超构透镜仅能实现消色差或大视场成像,需要大视场宽带消色差超构透镜来进一步提升太赫兹系统的成像质量。文中介绍了一种工作在0.3~0.5THz,数值孔径0.707,直径10mm,视场100°的太赫兹大视场消色差硅基超构透镜。该超构透镜采用了二次非球面型相位剖面,减小了轴外像差,实现了大视场;选取了相位和色散满足要求的单元进行布阵,消除了色差。因此,它有望被广泛应用在生物检测、太赫兹成像等领域。 相似文献
3.
大尺寸、大数值孔径、宽波段的消色差平面透镜设计是成像技术的一个瓶颈性问题,也是近年来超构透镜研究领域的一个重要挑战,主要原因是透镜的各个参量之间存在内禀的制约关系。文中结合消色差透镜的群时延理论及透镜的相位分布,通过理论分析给出各参量之间的半定量制约关系。同时,分别通过拓扑优化和直接二值搜索的方法,设计了不同参量下的消色差超构透镜和多阶衍射透镜,发现在保持效率80%左右的前提下,透镜尺寸增加了一倍,数值孔径或波段宽度减少了一半,而透镜厚度则随尺寸成线性增长。该结果表明,这两类平面透镜具有相同的內禀参数依赖关系,即透镜尺寸与数值孔径和波段宽度呈现反相关、与透镜厚度呈现正相关的关系,这与理论预测基本一致。 相似文献
4.
超构透镜作为一种灵活调控空间光场相位、振幅及偏振的有效选择,在超分显微成像中受到了广泛的关注。为了提高多波长显微成像的分辨率,解决传统光学系统结构厚重、设计复杂等问题,基于相位补偿理论,运用传输相位法以及粒子群优化算法,设计了一种基于二氧化钛纳米单元柱的反射式消色差超构透镜,在500~550 nm之间实现了恒定聚焦,且该透镜具有偏振不敏感的特性。与数值孔径相同但有色散的超构透镜的对比结果有效证实了该超构透镜的消色差功能。所设计的透镜可应用于多波长显微成像系统中并提高成像的分辨率。此外,该消色差透镜在数码相机和光学仪器等领域中也有较好的应用价值。 相似文献
5.
提出了一种基于径向梯度折射率(gradient index, GRIN)的消色差透镜,有效抑制了光学系统的色差效应。首先,利用径向GRIN透镜较低的球差和像差以及更优良的聚焦成像、更高的光学耦合效率的优势,实现了径向GRIN透镜的消色差光学系统的设计,消除了高阶像差。其次,通过对ZEMAX操作数POWR和SPHA的控制,分别对光学系统的光焦度和球差进行了优化设计。最后,推导并建立了径向GRIN透镜消色差光学系统的光焦度和色散模型,进行了径向GRIN透镜与常规胶合透镜的消色差效果对比实验。实验结果表明,径向GRIN透镜可以实现在波长范围486—656 nm良好的消色差功能,且消色差效果明显优于常规胶合透镜。径向GRIN透镜的弥散斑在艾里斑内,镜头聚焦情况良好,像差基本矫正且达到衍射极限,符合消色差透镜的良好成像要求。 相似文献
6.
光学稀疏孔径技术以其所具有的降低透镜加工面积、增大数值孔径和提升分辨率的能力被应用到超构透镜的设计和优化中。然而,目前稀疏孔径超构透镜的研究仅限于单波长,通常难以应用到宽波段成像领域。笔者基于波前编码和稀疏孔径技术设计了一种消色差稀疏孔径超构透镜。该消色差稀疏孔径超构透镜在加工面积降低至全孔径超构透镜25%的情况下,在可见光波段(400~700 nm)可实现与理想透镜一致的分辨率。该消色差稀疏孔径超构透镜既实现了对可见光波段的消色差,又解决了大孔径超构透镜的加工难题,具有加工成本低、消色差范围大、成像清晰等特点,在图像采集领域具有重要的应用价值。 相似文献
7.
叠层成像技术是近年来发展快速的相干衍射成像方法,目前已经成为世界上大多数X射线同步加速器和国家实验室不可或缺的成像工具。光学叠层成像是叠层成像技术在可见光波段的应用,分为基于透镜的傅里叶叠层成像与基于无透镜的编码叠层成像。编码叠层成像作为一种新型无透镜片上显微成像技术,具有大视场、高分辨率、无像差、无标记、便携式,以及缓变相位成像等诸多技术优点。本文介绍无透镜编码叠层显微成像的基本原理及最新研究进展,分析了其成像性能,重点介绍了其在生物医学方面的相关应用,并讨论了编码叠层成像技术未来的发展方向。 相似文献
8.
9.
三维成像技术具有强大的精细化空间数据描述能力,在消费电子、自动驾驶、机器视觉和虚拟现实等领域已成为最关键的传感技术之一。现有的三维成像技术受到传统折射元件和衍射元件的物理机制限制,难以满足设备小型化、集成化、多功能、大视场、大数值孔径、高分辨等性能要求。超构表面作为由亚波长纳米天线阵列构成的智能表面,能够实现对光场的振幅、相位、偏振等参量的人为调控,具有体积小、高空间带宽积、高效率、多功能、大视场等优势,有望成为新一代光学元件服务于三维成像技术。本文综述了基于超构表面的三维成像技术进展,在超构表面的物理机制和应用优势的分析基础上,详细介绍了超构表面在三维成像技术例如结构光技术、飞行时间法、光场成像和点扩散函数工程中的应用和表现,总结和展望了基于超构表面的三维成像技术面临的挑战和未来发展方向。 相似文献
10.
太赫兹波作为一种穿透性强、具有非电离性和惧水性的电磁波,可以穿透多种非金属、非极性介质材料。太赫兹计算层析成像技术基于傅里叶中心切片定理和直线传播模型,通过记录不同投影角度下的强度数据,采用滤波反投影等重建算法获得样品三维吸收系数分布和内外部结构信息分布。随着太赫兹成像器件的不断发展和应用场景的拓展,已发展出多种照明模式、成像光路和重建算法,并已在文物保护、骨密度测量和无损检测领域开展了应用探索。概述太赫兹计算层析技术的基本原理,并从提高重建质量、分辨率和采集效率三方面具体介绍太赫兹计算层析成像技术的最新研究。 相似文献
11.
非制冷红外探测器由于无需制冷装置,能够工作在室温状态下,具有成本低、体积小、功耗低等特点,在红外领域得到了广泛的应用。在军事应用方面,非制冷型探测器的应用逐渐进入了之前制冷型探测器的应用范围,大量应用在一些低成本的武器系统,甚至在一些应用领域取代了原来的非制冷型探测器。在民用领域方面,更表现出了其价格和使用方便的优势,在民用车载夜视、安防监控等应用领域引起了广泛的兴趣和关注。文中介绍了Bolometer、热释电、热电堆等几种典型非制冷红外探测器的工作原理,列举了目前已实现商业化应用的主要产品在国内外的情况,着重介绍了目前应用最广泛的Bolometer器件主流产品的像元间距、阵列规格、性能及其封装发展的情况。除了已实现商业化应用的Bolometer、热释电、SOI二极管等探测器等产品,还详细介绍了一些非制冷探测新技术或新型器件:比如超表面在增强某些波段吸收方面的应用,新材料的Bolometer探测器、双材料新型非制冷器件、石墨烯、量子点、纳米线等光电探测技术的研究进展。最后文章还对今后非制冷红外探测器的发展趋势作了预测。 相似文献
12.
红外探测在生物医疗、智慧城市、宇宙探索等前沿领域中有着重要的作用。近年来,以二维材料为代表的新型纳尺度半导体并以此形成的具有颠覆性意义的光电探测技术在探测灵敏度、极低暗电流、高工作温度等指标超越了传统薄膜器件的理论极限,是新一代红外光电探测技术有力竞争者之一。文中以局域场调控实现室温高性能光电探测为出发点,介绍了铁电局域场、层间内建电场、面内内建电场调控二维材料光电探测机理与器件实现方法;进一步,针对二维材料其尺寸效应引起的光利用率低或量子效率低的问题,提出了单边异质结和表面等离子激元增强结构的光电性能增强方法;最后列举了二维半导体材料在红外探测器领域的应用探索,展现了新型二维半导体红外探测器的应用潜力与前景,为新一代红外探测器技术提供了新方法和新思路。 相似文献
13.
红外成像探测技术是精确制导的重要手段,随着导弹武器向超音速、高超音速方向发展,红外成像探测装置的工作环境更为恶劣。高速飞行条件下恶劣的气动力热环境使红外窗口的结构安全面临极大挑战,激波、窗口等高温辐射源的辐射干扰严重影响红外探测能力,流场和窗口的传输效应降低了探测制导精度。气动光学效应是高速红外探测与传统红外探测的本质的区别,也是决定红外探测应用于高速导弹可行性的关键因素。文中主要介绍了高速红外成像探测的气动力热效应、热辐射效应和传输效应及其影响,阐述了气动光学效应在机理研究、试验研究、数值模拟和抑制校正技术方面的进展,最后给出了高速红外探测气动光学效应研究的思考与建议。 相似文献
14.
薄层的红外探测材料虽然能够保持很好的均匀性,减少了红外探测时的噪音,但由于薄层红外探测材料体积偏小,限制了红外探测器的吸收。针对不同红外探测材料的特点,利用人工微结构能够有效地改善红外探测器的性能。文中介绍了增强薄层红外探测材料吸收的策略,分别是使用金属背板、金属光栅结构和非对称F-P型金属腔体结构, 它们在各自适应的场景下都能取得不错的效果。同时也简略地介绍了人工微结构调控吸收峰高和峰宽的机理。并且展示了人工微结构在几种红外探测器件上的应用。最后,提出了一种人工微结构碲镉汞红外探测器的设计,实现了在3.5~5.5 μm大气窗口内的宽频吸收, 其中吸收峰的高度为91.8%,吸收峰的相对宽度为41.8%,在大气窗口内的大部分频率,增强系数均大于6。人工微结构的发展开拓了传统红外器件的设计思路,为新型的红外器件提供了理论依据和指导。 相似文献
15.
中红外探测技术作为一种重要的被动探测手段,在各个领域都有着非常重要的作用。其中,以InAs/InAsSb超晶格材料为基础的无Ga型Sb化物II类超晶格探测器,由于去除了Ga原子的缺陷,具有更高的少子寿命,有利于提高探测器性能。此外,使用光子晶体结构,进行表面光学性能调控,可以提高器件的响应度,从而降低材料吸收区厚度,降低器件暗电流。暗电流的降低和响应度的提升,进一步优化了探测器的性能,进而提高器件工作温度,进一步降低探测系统的体积、重量和功耗。研究表明:使用光子晶体结构可以在不改变外延材料结构的前提下,提高器件量子效率,实现响应光谱的展宽,在实际应用中具有重要的意义。文中综述和讨论了InAs/InAsSb超晶格探测器和光子晶体结构探测器材料生长、结构设计的主要技术问题,详细介绍了两种提高中红外探测器性能的方案及国内外的研究进展。 相似文献
16.
硅材料在1.1~8.5 μm有非常低的吸收损耗,因此硅基光电子学有望扩展到中红外波段。并且随着通信窗口扩展、气体分子检测、红外成像等应用需求的出现,硅基中红外波段器件研发工作的开展势在必行。在中红外波段硅基光电子器件中,硅基调制器有着举足轻重的地位:它是长波光通信链路中不可或缺的一环,还可以应用在片上传感系统中提高信噪比、实现光开关等功能。研究发现,相比于近红外波段,硅和锗材料在中红外波段有更强的自由载流子效应和热光效应,因此,基于硅基材料的中红外调制器具有独天得厚的优势。系统总结了中红外硅基调制器的发展趋势和研究现状,介绍了基于硅和锗材料的电光调制器以及热光调制器的工作原理和最新研究进展,最后对中红外硅基调制器进行了总结与展望。 相似文献
17.
偏振是光场的一个重要矢量属性。依据空间偏振分布的不同,可以将光场分为标量光场和矢量光场。其中,非均匀偏振分布的矢量光场在光场传播、聚焦、非线性效应等方面表现出一系列有趣的行为,对其进行深入研究具有重要的科学意义和应用价值。一种在同一波阵面上包含不同偏振态的杂化矢量光场,因其比普通矢量光场具有更丰富的偏振特性,自2010年被发现以来,在光通信、光学操控、量子通信等领域中展现诸多诱人的前景,目前已成为光学领域的一个研究热点。综述着重介绍了杂化矢量光的制备以及其在聚焦、传播和非线性光学等方面中的特性和应用。 相似文献
18.
多量子阱红外探测器是一种新型的利用子带跃迁机制的探测器件,具有非常高的设计自由度。GaN/Al(Ga)N量子阱由于大的导带带阶,超快的电子驰豫时间,超宽的红外透明区域以及高的声子能量,使得其成为继GaAs量子阱红外探测器之后又一潜在的探测材料结构。文中详细综述了国内外关于GaN基量子阱红外子带吸收及其探测器件的研究进展。首先介绍了量子阱红外探测器的工作原理及其选择定则,接着从极性GaN基多量子阱、非极性或半极性GaN基多量子阱以及纳米线结构GaN基多量子阱三个方面回顾当前GaN基多量子阱红外吸收的一些重要研究进展,包括了从近红外到远红外甚至太赫兹波段范围的各种突破。最后回顾了GaN基多量子阱红外探测器件的研究进展,包括其光电响应特性和高频响应特性,并对其未来的发展进行总结和展望。 相似文献
19.
作为消弱红外成像设备或系统性能的重要手段,人工制备的红外消光材料成为各国争相研究的对象,并取得了阶段性的研究成果。从金属材料、膨胀石墨、纳米材料、水基泡沫、生物材料和复合材料等方面介绍了人工制备红外消光材料的研究现状,阐述了粒子-团簇、团簇-团簇等消光材料粒子凝聚模型,介绍了Mie散射方法、离散偶极子近似方法、T矩阵方法和时域有限差分法等几种典型的消光性能计算方法。分析认为,未来人工制备的红外消光材料将朝着持续时间长、成本低、施放形式多样和环保无毒等方向发展。 相似文献