共查询到19条相似文献,搜索用时 93 毫秒
1.
光学元件亚表面损伤检测技术研究现状 总被引:1,自引:0,他引:1
在传统光学加工过程中产生的亚表面损伤(SSD)会降低光学元件的使用性能和寿命,需要对其亚表面损伤进行检测从而在加工过程中加以控制.从破坏性和非破坏性检测方法两方面概括性地分析了光学元件亚表面损伤的检测技术,对各种检测方法进行了分析和讨论,并指出了各种方法的优缺点.指出了国内的亚表面损伤检测技术与国际先进水平相比存在的差... 相似文献
2.
非球面光学元件具有更大的自由度和灵活性,广泛应用在航空航天、微电子装备、光学精密测量、激光光学等诸多领域。光学元件表面缺陷将影响光学系统性能,而表面缺陷控制需要相应检测手段,高分辨率、高精度、高效率光学表面缺陷检测仍存在技术挑战。文中综述了光学元件表面缺陷类别、评价标准及检测方法,重点探讨了非球面光学元件表面缺陷检测技术及其应用范围,分析比较了各种方法的优缺点,最后对表面缺陷检测技术发展趋势进行了展望。 相似文献
3.
4.
5.
为实现大口径光学元件表面疵病的高效率、高精准的检测,本文提出一种能分辨微米级疵病的光学显微散射扫描成像检测系统,因为该检测系统单个子孔径的物方视场为毫米级,所以检测大口径光学元件需对X、Y方向进行子孔径扫描成像并将子孔径图拼接成同一坐标系下的全孔径图。在进行扫描时,系统的机构误差会被引入到子孔径列阵中,导致子孔径拼接处产生像素错位,甚至造成拼接断裂的情况,从而严重影响疵病等级及位置的正确评定。鉴于此,本文对影响全孔径拼接最敏感的误差因素进行了分析,并根据其特点找到合理减小误差的方法,确保子孔径的正确拼接。 相似文献
6.
光学元件表面疵病检测扫描拼接的误差分析 总被引:2,自引:0,他引:2
为实现大口径光学元件表面疵病的高效率、高精准的检测,本文提出一种能分辨微米级疵病的光学显微散射扫描成像检测系统,因为该检测系统单个子孔径的物方视场为毫米级,所以检测大口径光学元件需对X、Y方向进行子孔径扫描成像并将子孔径图拼接成同一坐标系下的全孔径图.在进行扫描时,系统的机构误差会被引入到子孔径列阵中,导致子孔径拼接处产生像素错位,甚至造成拼接断裂的情况,从而严重影响疵病等级及位置的正确评定.鉴于此,本文对影响全孔径拼接最敏感的误差因素进行了分析,并根据其特点找到合理减小误差的方法,确保子孔径的正确拼接. 相似文献
7.
朝阳 《激光与光电子学进展》2007,44(10):8-9
有缺陷的轴承会给机器带来致命的损伤。以往检测滚珠轴承都用视频图像法,但是由于滚珠表面不是平面又有反射,检测和算法都存在困难。澳大利亚科学家利用光学显微镜和一个环形光源检测滚珠轴承表面,该技术可以简单方便地发现其缺陷、裂纹和波状纹。 相似文献
8.
9.
10.
为实现光学元件表面微小粗糙度的精准、详细检测,研究基于光学干涉法的光学元件表面粗糙度检测技术。该技术采用基于集成光学干涉成像技术对光学元件表面干涉成像,通过改进的Niblack二值化算法提取元件表面干涉图像条纹信息,并基于节点迭代的去毛刺方法细化处理干涉条纹,利用最小二乘方法拟合干涉条纹,获取最小二乘拟合直线得出评定基准,建立评定表面粗糙度的高度参数和间距参数的数学模型,完成粗糙度检测。测试结果显示:该技术干涉成像能力较强,生成的光学透镜元件干涉图像弧度与边缘较为清晰,可有效去除干涉条纹毛刺,检测光学元件表面粗糙度时的真正类率最大数值已达到1.0。 相似文献
11.
在高功率激光装置中,光学元件表面的污染物会降低光束质量甚诱导光学元件损伤。针对装置中受污染的镀有SiO2溶胶-凝胶增透膜的大口径真空隔离片(430 mm×430 mm),使用波长为355 nm的Nd:YAG脉冲激光器模拟在线激光清洗实验。实验中采用了单发次激光干式清洗与气流置换系统辅助的激光清洗系统,研究了关键特征参数对激光在线清洗效果的影响规律,获得了可用于激光在线清洗的工艺参数。光学元件的处理采用光学显微镜、暗场成像法表征以及图像处理软件分析。实验结果表明,激光在线清洗光学元件存在最佳工艺窗口。通过气流置换辅助的激光清洗方法后,相较于单纯的单发干式激光清洗,激光清洗能力有大幅提升。因此,气流置换系统辅助单发激光清洗能有效提高其清洗能力,为高功率激光装置中大口径光学元件表面污染物在线去除提供了一种有效手段。 相似文献
12.
激光清洗技术具有非接触、精度高、对基材损伤小、绿色环保等众多优点,在智能制造中发挥越来越重要的作用。随着激光清洗技术的发展,对激光清洗质量的快速检测及精准评价的需求越来越迫切。在激光清洗过程中,激光与待清洗层、基底发生作用,通过采集分析激光与物质相互作用过程中产生的光、声等信号和表面特性变化,可以实现对清洗过程和清洗效果的实时表征,完成对激光清洗的监控,目前逐渐被广泛地应用到自动化激光精密清洗过程中。文中分析和总结了声波监测法、光谱监测法和图像监测法等激光清洗监测技术的工作原理及研究进展,展望了激光清洗监测技术的未来发展趋势。 相似文献
13.
光在生物组织中传播时,会被微观尺度上不均匀的组织随机散射,这种现象严重制约了光学技术在生物医学中的应用。波前整形技术将散射过程当成一个确定性的过程,通过测量散射效应造成的相位延迟并利用空间光调制器进行逐点补偿,可以实现散射光的操控与重新聚焦。在各类波前整形技术中,基于光学相位共轭的数字化波前整形技术具有可调控自由度高、系统响应速度快等优点,最适宜与生物医学应用相结合,如生物活体成像、操控、治疗等。文中将重点关注基于光学相位共轭的数字化波前整形技术的发展,探讨该技术在应用研发中面临的主要技术瓶颈和挑战,并概述其应用开展情况。 相似文献
14.
随着我国工业不断地转型升级,对工业清洗的质量、效率、服务也提出了更高的要求,传统清洗方式因其高污染、高能耗等缺陷已无法满足工业领域的应用需要。而激光清洗作为一种绿色、环保、无损的新型清洗方式,迅速成为工业清洗领域的热点技术。文中梳理了三种典型的激光清洗方法,总结了激光清洗相关的机理。同时,阐述了面向航天航空、船舶建造、轨道交通等领域开展的激光清洗应用进展。根据近年来国内外院校和企业在激光清洗系统、设备方面的科技成果,提出国内激光清洗推广应用所面临的瓶颈,展望了激光清洗技术在未来的发展方向。 相似文献
15.
激光清洗是通过把高亮度和方向性好的激光照射到物体待清洗的部位,使激光器发射的光束被污染层和/或基底吸收,通过光剥离、汽化等过程,克服污染物和基底之间的粘附力,使污染物离开物体表面,达到清洗目的,且不损伤物体本身的物理清洗技术。20世纪80年代以后,激光清洗技术得到了越来越多的关注。40年来,激光清洗作为一种新型高效的环保清洗技术,得到了飞速发展,在电子元器件清洗、文物保护和脱漆除锈等领域得到研究并获得了应用。2010年以后,对激光清洗研究进一步深入,在激光清洗的检测和智能控制方面取得较大成果,并且在激光清洗机理方面也取得了进展。中国科学家在这个过程中也做出了贡献。介绍了激光清洗原理、特点、源起,对40余年的激光清洗发展做了综述,并介绍了国内近年来激光清洗的研究动态。 相似文献
16.
散射是光学成像中普遍存在的现象,成像路径中存在的烟雾、水体、生物组织等散射介质导致光束发生随机散射效应,使得像面处目标信息以杂乱无章的散斑形式存在,如何应对散射介质对成像的限制是当前光学成像领域的研究热点。全息技术能够记录和重建物体全部信息,是获取和解译光场信息的有力工具之一。近年来,传统全息以及相关全息理论被推广应用至散射成像领域,取得了一系列突破性成果,文中主要介绍与归纳了散射成像领域中应用全息技术的理论原理、发展历史及最新进展,并展望其发展前景。 相似文献
17.
光学谐振腔不仅可以增强激光和物质的相互作用,而且能够抑制激光的噪声,是开展精密测量、量子光学等研究的重要工具。激光和光学谐振腔共振的稳定锁定是其应用的关键。然而,在实际环境中锁定效果会受机械振动、温度变化等因素的影响。提出了将模糊算法应用于PDH (Pound-Drever-Hall)技术,使比例积分微分控制器的三个参数能够根据外界环境变化进行调节以实时获得最优参数,有效提升了光学谐振腔的锁定的抗干扰能力。如果外界干扰仍然过大以至于失锁,系统可以使其自动重新锁定。该系统有效增强了光学谐振腔的实用性,为光学谐振腔在精密测量、量子光学实验中的应用提供了技术基础。 相似文献
18.
为实现轴对称非球面反射镜轮廓的高精度、可溯源测量,建立了非球面测量轨迹的数学模型,提出了一种基于独立计量回路的非接触式坐标扫描测量方法。该方法采用分离式计量框架结构,有效减少了跟踪扫描模块运动对测量精度的影响;测头采用集成阵列式波片的四象限干涉测量系统,保证测头精度的同时更有利于实现复杂面形轮廓的跟踪扫描运动;设计扫描执行机构与多路激光干涉系统共基准的运动模块,实时跟踪扫描运动机构的位置信息,提高测头空间定位精度并使其测量值能溯源到“米”定义。搭建测量装置测试该方法的准确测量精度,试验结果表明,测量误差小于0.2 μm,重复性精度为70 nm,测量精度达到亚微米级。 相似文献
19.
基于激光诱导超声机制的光声成像技术结合了光学成像的高对比度和超声成像的深穿透性,能无标记、非侵入反映生命体内源性吸收物质的分布,适合啮齿类动物模型全脑的即时成像。为了证明光声技术在脑科学研究和脑疾病监测中的应用,搭建了光声显微成像系统,其空间分辨率可达几十微米,有效成像深度可达1 mm以上,并以APP/PS1转基因阿尔茨海默症(Alzheimer’s disease, AD)模型小鼠和野生型WT小鼠为研究对象,从脑组织切片、离体全脑和活体全脑三个层面探究了光声成像在表征AD鼠和WT鼠脑结构变化和血管网络的能力,证明了光声技术在研究脑疾病发展过程中监控脑结构变化和脑血管网络特征的巨大潜力,可以为诸多脑科学研究和神经退行性疾病发展机制提供更深入的见解。 相似文献