首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 203 毫秒
1.
基于高压(50 MPa)下黄金管生气动力学实验,对塔里木盆地不同原油样品裂解成气组分产率特征与动力学参数进行了研究,并探讨了地下原油的热稳定性.结果表明,牙哈5井原油、哈得4-87井原油样品裂解具有很高的总气态烃产率(分别高达738.87和598.98 mL/g)和大量的C2-5烃产率(分别为256.85和188.63 mL/g);原油样品裂解生成甲烷的活化能分别为276.3~347.5 kJ/mol、263.8~351.7 kJ/mol;频率因子分别为2.07×1016s-1、1.42×1016s-1.地质条件下,牙哈5井原油、哈得4-87井原油的消失温度分别为197~220.8℃和186.5~212℃.  相似文献   

2.
重油催化裂解C4烃的二次裂解性能研究   总被引:3,自引:1,他引:2  
针对重油催化裂解的C4利用小型固定流化床试验装置,考察了其在CEP-1催化剂上的二次裂解性能,详细分析了产物分布随反应温度的变化规律。结果表明,C4烃仍然具有较好的催化裂解性能,乙烯产率随反应温度的升高逐渐增加,而丙烯产率在660℃附近出现最大值,乙烯与丙烯总质量产率在660℃接近36%。推导建立了烃类催化裂解消失动力学模型,求取了C4烃催化裂解的消失反应速率常数、频率因子和活化能。  相似文献   

3.
相态——原油裂解成气模拟实验中的一个重要问题   总被引:2,自引:1,他引:1  
在温度为400~460℃、压力为50~150MPa的条件下,用金管—高压釜系统对nC22进行了恒温24h热解。结果显示:当压力一定时,甲烷和重烃气(C2-5)的产率均随热解温度增高而增加。而当温度一定时,压力对甲烷和重烃气产率的影响却随系统的热解温度变化存在较大差异,其中温度在400℃时,气态烃产率随压力的增加而降低;在温度为420℃时,压力对气态烃产率的影响轻微;在温度为420℃以上时,压力越大气态烃的产率增加越显著。在讨论了温度、压力对原油裂解的影响后认为,体系的相态是裂解成气实验中值得重视的一个问题。  相似文献   

4.
应用50MPa高压封闭体系,对塔里木盆地海相原油及其沥青质进行了热裂解模拟实验,对气态烃产率及碳同位素演化、焦沥青的生成等方面进行了比较,探讨了原油裂解和沥青质裂解生气机理。研究发现,原油和沥青质裂解气各组分及焦沥青的产率变化类似。完全发生裂解时,沥青质裂解的总气体产率为原油裂解的50%,原油裂解和沥青质裂解生成总气体和焦沥青的质量比值分别为6:4和3:7。在裂解过程中,气态烃碳同位素δ13C值的特点是δ13C113C213C3,且原油裂解气各组分(C1—C3)碳同位素δ13C值小于沥青质裂解气的相应组分。运用kinetics软件,计算得到原油和沥青质裂解的动力学参数(活化能和指前因子)。在此基础上,将实验结果外推至地质条件下,探讨了动力学模型的实际应用,为原油裂解气的判识、资源评价、勘探决策提供实验和理论依据。  相似文献   

5.
为适应东部盆地向深层—超深层勘探的需求,通过歧口凹陷沙河街组典型原油的裂解生气模拟实验,采用原油裂解生烃动力学特征研究深层烃类流体相态变化规律。结果表明:原油裂解气生烃动力学可以方便地研究地质条件下原油裂解程度,进而判断地下油气相态的理论深度极限。在固定频率因子A=10~(14)S~(-1)前提下,渤海湾盆地歧口凹陷沙河街组原油裂解成C_1—C_5的活化能分布在250~270kJ/mol之间,平均活化能E_0=255.47kJ/mol,高于海相原油的245kJ/mol(59kCal/mol)。在同等升温速率条件下,其裂解生气路径与西部海相原油存在明显差异。以歧口凹陷地层沉积埋藏史确定的热史路径进行动力计算结果显示,歧口凹陷深层单一液相原油存在的理论深度极限为5 700m,凝析油气存在的理论深度极限为6 700m。结合歧北次凹和滨海具体地质条件进行油气藏相态演变过程分析,结果表明:在实际地质条件下,干酪根的裂解生气和更深部气源的充注气侵,使得原有油藏提前达到极高的气油比,纯液相原油提前消失。油气运移到浅部过程中受温—压条件的变化,导致了油气的分异和相态转换。温度和时间决定的生烃效应是深层油气相态的内因,在具体分析单个油藏相态时,不仅要考虑油气来源、组成、油气成藏过程,尤其还要注意后期构造活动造成的油气调整改造,这些是后期油气相态分异转化的外因。  相似文献   

6.
采用自制催化剂,通过实验对比了石脑油热裂解和催化裂解反应的特征,考察了反应温度、反应时间、重时空速和石脑油分压等反应条件对石脑油催化裂解反应产物分布和产率的影响。实验结果表明,在较高反应温度下,石脑油的热裂解反应和催化裂解反应同时存在,且催化裂解反应相对于热裂解反应具有明显的优势;温度越高,热裂解产物越多,而催化裂解产物先增加后减少;增加催化裂解时间和热裂解时间之比能明显提高低碳烯烃的产率;降低重时空速能提高石脑油的转化率;而降低石脑油分压对多产低碳烯烃非常有利。  相似文献   

7.
在珠江口盆地白云凹陷多个层系都发现了储层沥青。储层沥青丰度自上部的珠海组、珠江组至深部的恩平组、文昌组逐渐增加。储层沥青在物性较好的粗粒砂岩中多为零星状出现,而在细粒的粉砂岩和泥岩中主要呈脉状分布而且含量明显增加。几乎所有的储层沥青均没有显示出明显的各向异性,而且沥青反射率均小于2.0%,表明高温热裂解不是储层沥青形成的主要原因。沥青抽提物的分子地球化学组成特征显示,白云凹陷储层沥青抽提物中缺乏25-降霍烷系列,色谱基线没有明显的“UCM”鼓包、单井地层埋藏史显示储层也未遭受大幅度的抬升剥蚀,因此储层沥青也非生物降解成因。结合地质背景和油气藏特征分析认为,白云凹陷储层沥青的成因为:恩平组-文昌组烃源岩早期生成的原油聚集成藏以后,深部主要遭受了后期天然气的气洗作用。不同层位烃源岩、储层热演化的时间差异是导致白云凹陷油气藏发生调整,并转变为轻质油、挥发油等特殊油藏类型的重要原因。  相似文献   

8.
对比了直馏石脑油催化裂解与热裂解反应行为的异同。结果表明,在反应温度为600~700 ℃范围内,与热裂解反应相比,直馏石脑油催化裂解反应可以明显降低反应温度、提高裂解反应深度以及裂解气体产率,尤其是使乙烯产率提高2~3百分点,丙烯产率提高5~7百分点;热裂解与催化裂解干气中各组分的体积分数差异较大,主要归因于不同反应温度下,烃类裂解反应路径不同;与原料烃类组成相比,催化裂解与热裂解汽油组成变化趋势相同,其中环烷烃比链烷烃更易于参与化学反应,较高反应温度时,裂解汽油中芳烃含量增加幅度较大。  相似文献   

9.
为了研究不同类型原油和源内残余沥青在高演化阶段的甲烷产率,明确天然气成因类型,系统整理了不同类型原油及源岩的金管模拟实验结果,统计了甲烷产率随模拟温度的变化,发现原油性质对生气过程和生气量都有明显控制,重质油起始生气温度低于轻质油和正常油,在原油裂解成气初期,甲烷产率变化为重质油>正常原油>轻质油,重质油对天然气成藏贡献较大;在原油大量裂解过程中,轻质油的甲烷产率很快超过正常原油和重质油,最终成为天然气成藏的主力。重质油产气早是因为其富含非烃和沥青质,裂解活化能低,产气率低与H/C值(原子比)低有关,轻质油产气晚是因为其富含饱和烃,裂解活化能高,产气率高与H/C值(原子比)高有关。轻质油开始裂解对应成熟度约为Easy% RO=1.5%。干酪根及源内分散沥青生气与原油裂解受相同的因素控制,H/C值高低控制了不同类型干酪根的生气量,在各成熟阶段上甲烷产率始终是Ⅰ>Ⅱ>Ⅲ型有机质。源内分散沥青在化学组成上接近重质油,但比重质油更容易裂解,除活化能低外,还受到黏土矿物催化的影响,其起始裂解成熟度大体为Easy% RO=1.0%。这种差异对热演化程度极高的四川盆地天然气成因类型确定和潜力评价有非常重要的地质意义。  相似文献   

10.
为了研究柴达木盆地北缘(柴北缘)原油裂解及其相态演化历史,应用黄金管封闭体系高压釜模拟实验,对柴北缘马北106井古近系储层中原油进行了热模拟生气实验。通过对各演化阶段的流体组分精确定量,建立了原油裂解过程中的相态演化模型,同时根据化学动力学原理,计算获取了原油裂解成气的动力学参数。以此为基础,对柴北缘伊北生烃凹陷的原油裂解和相态演化史进行了重建。研究表明,独立相原油地下保存温度上限受到热演化程度和地层温度、压力的双重控制。原油裂解过程中的流体临界压力表现出明显的“稳定”(Easy%RO<1.08%)、“升高”(1.08%<Easy%RO<2.05%)、“降低”(Easy%RO>2.05%)3个阶段变化特征。柴北缘伊北生烃凹陷原油裂解从距今约20Ma开始,现已基本完全裂解,其流体相态在N22—Q1+2期间由液相转变为气相,油气运移过程中在埋深浅于1 500m时发生气液分异,伊北凹陷及其周缘勘探方向为深部找气、浅部找油,中心找气、周缘找油。  相似文献   

11.
在天然气成因类型研究中,如何有效识别干酪根与原油裂解气一直是一个难题。选取不同类型干酪根、不同性质原油开展半封闭—半开放体系的热压生排烃模拟实验及其产物的地球化学分析研究,并对典型的干酪根、原油裂解气(田)进行了地球化学统计和比对。研究表明,干酪根热解气与原油裂解气中烷烃组分及其碳同位素组成显示相似的演化特征,Ln(C2/C3)值均呈早期近似水平和晚期近似垂向变化特征,在高过成熟阶段Ln(C2/C3)值与δ13C213C3差值具有快速增大的趋势,二者趋同性变化特征指示了生气母质的高温裂解过程,但这些指标不是干酪根与原油裂解气的判识标志,提出天然气中烷烃分子及同位素组成的有机组合是判断有机质(干酪根、原油)高温裂解气的可靠指标,却并不能直接识别干酪根热解气或原油裂解气;非烃组分的演化特征具有明显的差异性,干酪根热解气以高含氮气(N2)为主,原油裂解气往往高含硫化氢(H2 S), N2、H2 S含量作为一项重要指标可以与烷烃气同位素组成相结合有效区别干酪根与原油裂解气,分析结果与四川盆地、塔里木盆地不同油气田的地质实际相吻合。天然气中烃类和非烃组成的综合分析为有效判断干酪根与原油裂解气提供了新的途径。  相似文献   

12.
选择川西北矿山梁地区低成熟沥青,采用封闭金管-高压釜体系,以20℃/h和2℃/h的升温速率进行生烃热模拟实验,分析了气体产物组分、产率和烃类气体碳同位素组成及变化特征。结果表明,沥青具有较强的产气潜力,是一种重要的生气有机母质;甲烷、乙烷和丙烷气体的碳同位素值分别为-50.85‰~-37.53‰、-37.93‰~-13.75‰和-37.10‰~-6.45‰。低演化阶段出现δ13C213C3,之后,不同碳数烃类气体碳同位素组成关系为δ13C113C213C3。沥青热模拟甲烷最终碳同位素值为-37.53‰,轻于川中威远地区震旦系-寒武系常规天然气(-32.3‰~-34.7‰)和页岩气(-35.1‰~-37.3‰)的甲烷碳同位素值。川中威远地区常规天然气可能为具较重甲烷碳同位素的干酪根裂解气与具较轻甲烷碳同位素的原油裂解气的混合气。而页岩气中则可能富含更多的原油裂解气,干酪根裂解气相对较少。将生烃动力学结果应用到川中高科1井可见,早-中侏罗世,寒武系烃源岩进入主生油期,生成原油排出,部分进入到震旦系继续生气,侏罗纪进入主生气期及其在早白垩世后期进入生气末期,气态烃转化率达94%,比残留在寒武系中的沥青多约20%。  相似文献   

13.
柯克亚地区原油裂解气的地质-地球化学特征   总被引:9,自引:0,他引:9  
对柯克亚地区原油和天然气的地球化学特征分析表明:原油和天然气的成熟度相对较高,均处于裂解气的成熟阶段;原油中存在着丰富的金刚烷,缺少含氮化合物,与在国外发现的裂解气共生的原油有相似之处;随着油层深度的增加,天然气中甲烷的含量依次增多。认为柯克亚地区天然气主要为原油裂解气,原油裂解作用是该区天然气的主要成因之一。  相似文献   

14.
原油裂解的动力学及控制因素研究   总被引:1,自引:2,他引:1  
基于黄金管模拟实验对原油裂解的动力学及控制因素进行了研究。通过气态烃的定量分析,发现原油的持续裂解使得总裂解气体积及CH4产量不断增加,而C2-5的产量则先增加后减少。动力学计算可得,HD11井原油裂解生气总反应的平均活化能为59.8 kcal/mol(250.0 kJ/mol),频率因子A为2.13 ×1013 s-1。残留原油组分的色质分析结果表明,不同族组分的相对稳定性存在差异,且原油中的大分子更容易发生裂解。同时,不同介质条件下的对比实验结果及前人的研究,都证实了压力、水及粘土矿物等因素很可能影响甚至控制原油的裂解。尽管作用机制不同,高压和水的存在都能抑制裂解过程中的自由基链反应,从而起到提高原油稳定性的效果。而粘土矿物,尤其是蒙脱石或伊/蒙混层矿物,则会通过酸催化作用加速原油或烃类的裂解,且裂解气产率与矿物表面的Brnsted酸位强度成正相关。  相似文献   

15.
原油裂解气在天然气勘探中的意义   总被引:48,自引:8,他引:48  
从油气生成理论和古油藏演化过程的讨论中引申出原油裂解气的问题。一般所说的原油裂解气主要是指古油藏演化中的原油裂解气 ,油藏中的原油由于后期深埋 ,必然发生裂解而形成天然气和沥青。这种原油裂解气只有在特定的地质条件下才能形成 ,如塔里木盆地巴楚隆起的和田河气田的天然气 ,主要是由于构造运动使早期形成的油藏埋藏很深导致原油裂解的产物。塔北隆起东部桑塔木断垒带的天然气与和田河气田的天然气同是源自寒武系烃源岩 ,但桑塔木天然气主要为干酪根裂解气 ,而和田河天然气主要为原油裂解气 ,因此二者在天然气组成和天然气组分碳同位素特征上存在差异 ,如虽然二者成熟度一致 ,但和田河气田天然气的非烃气体含量高于桑塔木天然气 ,其甲烷碳同位素值则比桑塔木天然气的轻。对于古油藏而言 ,原油裂解既对油藏起破坏作用 ,同时又可形成天然气藏的特殊气源。图 6参 1 2  相似文献   

16.
低成熟度页岩油加热改质热解动力学及地层渗透性   总被引:2,自引:0,他引:2  
低成熟度页岩油加热改质是采用加热井对地层进行加热,将地层中滞留的重质烃转化为轻质烃,同时将尚未转化的固体有机质热解生成油气后采出。热解油气生成量预测及地层孔渗变化是页岩油改质开采研究的难点和挑战之一。利用页岩井下取心样品,采用黄金管实验装置,研究了页岩加热过程中的有机质热解规律及组分动力学,获得了烃类气体、轻质油及重质油的生成动力学参数。结果表明,在温度为280~500℃范围内,油的生成量先增后减,而气体量持续增加;低速升温条件下的转化率随温度变化曲线左移,热解温度变低。重质油、轻质油和气态烃的活化能分别为39~49,57~74和56~59 kcal/mol;动力学模型可预测任意时间的烃类生成量。应用三轴高温渗透率测试装置,获得了页岩从室温到高温(550℃)条件下的氮气测试渗透率动态变化规律。结果显示,页岩加热过程中的渗透性变化分为下降段、上升段和稳定段,在温度达到有机质热解温度后,基质及裂缝渗透率均出现明显改善,比初始渗透率提高1~2个数量级。热解油气生成量及渗透率变化可为低成熟度页岩油加热改质开采的产量预测提供依据。  相似文献   

17.
应用封闭金管-高压釜体系,对取自新疆塔里木轮古地区基本不含硫的轮古原油样品、原油加元素硫以及原油加正丙硫醇组合分别进行系列性热模拟实验;通过对比各个系列的产物产率特征及碳同位素组成特征,研究硫对原油裂解产物及烃类气体碳同位素组成的影响。结果显示,无论是硫元素还是有机硫化合物的加入,总体上轻微抑制了甲烷等烃类气体的生成,并促使H 2 和CO 2 等非烃类气体产量的增加;同时,加入的元素硫与有机硫化合物的量对反应产物的组成也有明显的影响。硫的加入对烃类气体碳同位素组成影响显著,使低温阶段生成的烃类气体碳同位素变重;尤以有机硫化合物的影响最为显著,与原油本身裂解烃类气体碳同位素相比,其对甲烷碳同位素的影响差值高达7‰,而对乙烷及丙烷碳同位素组成的影响差值也达到5‰。此外,硫对原油裂解产物组成的影响明显与硫元素的化学状态有关,有机硫化合物参与裂解反应的机理与元素硫明显不同.  相似文献   

18.
对柯克亚地区原油和天然气的地球化学特征分析表明:原油和天然气的成熟度相对较高,均处于裂解气的成熟阶段;原油中存在着丰富的金刚烷,缺少含氮化合物,与在国外发现的裂解气共生的原油有相似之处;随着油层深度的增加,天然气中甲烷的含量依次增多。认为柯克亚地区天然气主要为原油裂解气,原油裂解作用是该区天然气的主要成因之一。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号