首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 750 毫秒
1.
光纤传感技术的研究进展及应用   总被引:5,自引:1,他引:4  
随着光纤传感技术的不断发展,几乎在各个领域得到研究与应用。综述光纤传感技术的最新研究进展及其在某些领域的应用开发研究。首先介绍了光纤光栅传感器、阵列式光纤传感系统、分布式光纤传感系统以及智能结构的光纤传感器原理、优缺点及研究方向,这些是目前研究的热点;其后介绍了光纤传感技术在军事、周界安防、工程应用、电力工业等领域的应...  相似文献   

2.
分布式光纤传感技术及其应用   总被引:2,自引:0,他引:2  
分布式光纤传感技术是近年来光纤传感领域的研究热点.介绍了该领域的研究成果,包括基于光纤后向散射光时域及频域反射技术、基于光纤瑞利散射偏振光时域反射、基于长距离光干涉技术的分布式光纤传感以及基于非同和全同光纤布拉格光栅复用的准分布式光纤传感技术;论述了分布式光纤传感系统的工作原理、特点及性能;介绍了其在民用工程结构、航空航天、船舶工业、电力工业、石油化工业和医学等各个领域中的应用.  相似文献   

3.
分布式光纤传感技术由于其自身的优势,在光纤传感领域具有很重要的影响,他可以进行长距离连续的传感,并且在许多方面都得到了广泛的运用。本文对长距离分布式光纤传感技术进行了相关分析,希望能够对光纤传感的研究提供相关帮助。  相似文献   

4.
光纤传感技术的现状与展望   总被引:1,自引:0,他引:1  
高希才 《压电与声光》1989,11(1):8-14,62
本文以实例说明了功能型、非功能型以及分布式光纤传感器的现阶段发展水平。并以此为基础,剖析了光纤传感技术在今后10年间的主要发展趋势,以期对我国光纤传感技术的发展有所裨益。  相似文献   

5.
本文介绍了光纤传感的基本原理,提出了分布式光纤传感技术在不同领域的应用现状和应用特性。将分布式光纤传感技术融合到不同领域中,以同时实现光纤的通信功能和传感功能,对提高人民的生活品质,具有极其重要的现实意义。  相似文献   

6.
光纤传感取代电传感已呈大势所趋。目前市场上的光纤传感绝大部分都是基于光波分复用(OWDM)的准分布式传感原理以及尚处于科研阶段的时域分布式(OTDR)光纤传感技术;两者均受制于各自的缺陷,离大规模市场应用尚待时日,尤其是在更高要求的传感领域更是无法实现。本文所介绍的光纤传感技术起源于激光雷达的调频连续波(FMCW)原理,采用相干探测进行检测,利用光纤本身进行直接传感,完全可以构建低成本的分布式传感网络,完成超远距离、超高精度和超低噪声的实时监控,可广泛用于国防、石油勘探和安保等各个传感领域。  相似文献   

7.
光纤完全分布式温度传感系统研究进展   总被引:16,自引:0,他引:16  
综述了光纤分布式温度传感系统的理论、技术等方面的最新进展和研究方向。  相似文献   

8.
分布式光纤传感技术及其应用   总被引:1,自引:0,他引:1  
光纤传感技术已有20多年的研发历史,期间技术不断更新发展,已出现一些以实用或正接受现场测试的传感器结构。最近分布式光纤传感技术再次受到瞩目,该技术能对大楼、桥梁、高速公路等大型建筑或小型船舶的应变/变形及温度状况进行动态分析检测,使其具有可“感知”损害的功能,因此它与多点式传感技术一起被列入智能结构/材料技术的范畴。本文将综述(全)分布式光纤传感技术及其研制水平,并给出目前国外较具代表性的研究应用实例。  相似文献   

9.
基于相关连续波的布里渊传感技术   总被引:1,自引:0,他引:1  
概述了基于布里渊散射的分布式光纤传感技术的传感机理,对目前基于布里渊散射的分布式光纤传感技术的各种主要研究方案及其概况进行了评述介绍了一种新颖的基于相关连续波的布里渊传感技术,并论述了这些技术尚存的问题和可能的解决办法.  相似文献   

10.
现有分布式光纤传感数据存储方法由于节点分布较为广泛,节点故障致使数据丢失现象常有发生,无法适应现今分布式光纤传感技术的发展与应用,故提出分布式光纤传感数据编码存储方法研究.依据现今光纤传感数据存储需求,结合网络编码与云存储优点,搭建基于网络编码的数据云存储架构,以此为基础,选取纠删码形式对分布式光纤传感数据进行编码,以...  相似文献   

11.
为解决智能机器人仿生柔性触角形状感知问题,研究柔性光纤传感方法。建立光纤触觉传感器三维模型,推导出柔性触角探测物体形状的曲率计算公式,建立柔性触角形状传感系统,实验研究光纤布拉格光栅作为传感元件的可行性,分析柔性仿生触角标定误差,得到仿生柔性触角弯曲导致光纤光栅中心波长漂移量与形状曲率的关系,拟合曲线与实际曲线之间的参数偏差小,验证了仿生柔性触角形状光纤传感技术可行性。研究结果表明,光纤传感方法可实现仿生柔性触角形状感知,在智能机器人领域具有应用前景。  相似文献   

12.
认知无线电技术实现了频谱资源的动态分配,提高了频谱资源的利用率。而准确高效的频谱感知是认知无线电的核心环节,因此研究快速高性能的频谱感知算法已经成为一个亟待解决的问题。近年来,拟合优度检验在频谱感知领域得到了广泛应用,实现了小采样点下的有效频谱感知技术。因此,基于拟合优度的频谱感知技术具有重要的研究意义。综述了GOF在频谱感知中的发展历程,介绍其基本原理、常见的拟合准则及拟合对象;然后在高斯信道下,对该类算法进行仿真对比;最后对GOF类算法的进一步研究进行了展望。  相似文献   

13.
解琳  佟璐 《激光杂志》2021,42(1):149-153
光纤传感谱形复用研究属于传感网络设计里的核心问题,针对当光纤传感谱形复用技术存在的误差大,耗时长等缺陷,结合光纤传感谱形复用的特点,设计了 一种基于大数据分析技术的光纤传感谱形复用技术.首先采用大数据分析技术得到法得到光纤传感重叠光谱数据,并对其进行一定的预处理,然后引入粒子群算法对光纤传感重叠光谱数据实施光纤传感谱形...  相似文献   

14.
光纤传感技术在智能材料损伤定位评估中的应用   总被引:1,自引:0,他引:1  
谭伟杰 《信息技术》2007,31(11):56-58
传感技术是智能材料结构主要应用的技术之一。智能材料结构中的光纤传感网络分布范围大,传感网络输出信号可以是大面积的分布信号,也可以是数十甚至成千上万个离散的信号,且常常呈非线性。应用光纤传感神经网络的方法对智能型材料损伤定位进行分析研究,可以解决以上实时监控的问题。通过实验,结果表明神经网络技术进行智能材料的损伤定位,可以提高损伤位置的识别率。  相似文献   

15.
光纤光栅传感解调系统的研究进展   总被引:7,自引:0,他引:7  
王宏亮  张晶  乔学光  贾振安  王瑜  马超 《半导体技术》2007,32(3):188-192,207
光纤光栅传感以其强大的优越性受到了社会的广泛关注,波长编码信号解调是实现光纤光栅多参量、多点分布式传感网络的关键技术.综述了光纤光栅传感信号解调技术的研究进展,对几种较成熟的解调方法的工作机理、特点和性能作了重点分析,分别给出了典型的实验原理图,并对其应用前景作了展望.  相似文献   

16.
针对变体飞行器变形机翼气动外形监测需求,提出一种植入式柔性复合蒙皮形状光纤传感方法。通过将光纤光栅传感器植入硅胶薄层,并与聚氯乙烯薄片组成复合蒙皮。建立柔性蒙皮形状传感系统,采用光纤传感解调系统,实验测得不同翼型下柔性蒙皮中光纤光栅反射谱特征及其变化规律;计算出柔性蒙皮弯曲曲率,并重建出柔性蒙皮变形三维形状;采用数字摄影测量系统完成对比测试。研究结果表明:柔性复合蒙皮变形光纤传感测量与数字摄影测试误差小于4.62%,光纤传感灵敏度达到245.5 pm/m-1。验证了植入式光纤传感方法的有效性,为变体飞行器变形机翼气动外形监测提供了参考。  相似文献   

17.
激光散斑传感技术具有结构简单、灵敏度高等特点,可以实现对应力、振动、距离、速度、流速等物理量的传感测量,已成为光学传感领域中的研究热点之一。设计了一套基于激光散斑的应力传感系统。该系统使用波长为405 nm激光作为光源,利用音圈电机振动多模光纤,同时采用CCD图像传感采集系统对抛光玻璃表面进行显微成像,通过MATLAB软件对采集到的散斑图像进行分析处理,计算散斑对比度,拟合散斑对比度随时间变化的曲线。结果表明:散斑图像对比度的变化反应了多模光纤应力的变化,通过多模光纤应力变化可以判断是否有入侵者,实现了防盗功能。  相似文献   

18.
周勇  胡文彬  程普  叶泓蕤  郭东来  杨明红 《红外与激光工程》2023,52(3):20220485-1-20220485-9
多芯光纤光栅形状传感技术利用空分复用以及应变监测的优势,结合不同的栅点布设方案,实现待测对象的连续曲率和形状传感。首先介绍了多芯光纤光栅曲率和挠率传感原理,提出采用齐次矩阵变换的三维重构算法实现光纤的三维形状重构。为了探究不同光栅密度对实验精度的影响,利用算法编程模拟了不同光栅间距下的三维形状重构精度,依据模拟仿真的结果,建立了不同光栅间距与三维重构误差之间的关系。三维形状传感实验使用光栅间距为10 cm和5 cm的七芯光纤光栅串。实验结果表明,最大误差出现在尾点处,分别为2.56 cm和1.15 cm,占全长的3.2%和1.4%,平均误差为1.32 cm和0.62 cm,占全长的1.7%和0.8%。实验结果与仿真值比较接近,说明可以依据仿真结果对不同光栅间距下的三维形状误差进行预测。结合具体的应用场景合理配置测点资源,在较低的成本范围内实现高性能的检测。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号