首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    

A long history has passed since electromyography (EMG) signals have been explored in human-centered robots for intuitive interaction. However, it still has a gap between scientific research and real-life applications. Previous studies mainly focused on EMG decoding algorithms, leaving a dynamic relationship between the human, robot, and uncertain environment in real-life scenarios seldomly concerned. To fill this gap, this paper presents a comprehensive review of EMG-based techniques in human-robot-environment interaction (HREI) systems. The general processing framework is summarized, and three interaction paradigms, including direct control, sensory feedback, and partial autonomous control, are introduced. EMG-based intention decoding is treated as a module of the proposed paradigms. Five key issues involving precision, stability, user attention, compliance, and environmental awareness in this field are discussed. Several important directions, including EMG decomposition, robust algorithms, HREI dataset, proprioception feedback, reinforcement learning, and embodied intelligence, are proposed to pave the way for future research. To the best of what we know, this is the first time that a review of EMG-based methods in the HREI system is summarized. It provides a novel and broader perspective to improve the practicability of current myoelectric interaction systems, in which factors in human-robot interaction, robot-environment interaction, and state perception by human sensations are considered, which has never been done by previous studies.

  相似文献   

2.
基于表面肌电的运动意图识别方法研究及应用综述   总被引:10,自引:0,他引:10       下载免费PDF全文
表面肌电信号 (Surface electromyography, sEMG) 是人体自身的资源, 蕴含着关联人体运动的丰富信息, 用它作为交互媒介以构建人机交互 (Human-robot interaction, HRI) 系统有天然的优势.通过肌电信号实现人机自然交互的关键是由肌电信号识别出人体运动意图, 通常包括离散动作模态分类、关节连续运动量估计及关节刚度/阻抗估计等三方面内容.本文详细归纳基于表面肌电的运动识别方法研究成果, 总结当前研究的特点; 随后, 介绍基于表面肌电的运动识别技术的应用现状, 并探讨制约其推广的主要问题; 最后, 展望该技术的未来发展.  相似文献   

3.
    
This paper presents an innovative investigation on prototyping a digital twin(DT)as the platform for human-robot interactive welding and welder behavior analysis.This humanrobot interaction(HRI)working style helps to enhance human users'operational productivity and comfort;while data-driven welder behavior analysis benefits to further novice welder training.This HRI system includes three modules:1)a human user who demonstrates the welding operations offsite with her/his operations recorded by the motion-tracked handles;2)a robot that executes the demonstrated welding operations to complete the physical welding tasks onsite;3)a DT system that is developed based on virtual reality(VR)as a digital replica of the physical human-robot interactive welding environment.The DT system bridges a human user and robot through a bi-directional information flow:a)transmitting demonstrated welding operations in VR to the robot in the physical environment;b)displaying the physical welding scenes to human users in VR.Compared to existing DT systems reported in the literatures,the developed one provides better capability in engaging human users in interacting with welding scenes,through an augmented VR.To verify the effectiveness,six welders,skilled with certain manual welding training and unskilled without any training,tested the system by completing the same welding job;three skilled welders produce satisfied welded workpieces,while the other three unskilled do not.A data-driven approach as a combination of fast Fourier transform(FFT),principal component analysis(PCA),and support vector machine(SVM)is developed to analyze their behaviors.Given an operation sequence,i.e.,motion speed sequence of the welding torch,frequency features are firstly extracted by FFT and then reduced in dimension through PCA,which are finally routed into SVM for classification.The trained model demonstrates a 94.44%classification accuracy in the testing dataset.The successful pattern recognition in skilled welder operations should benefit to accelerate novice welder training.  相似文献   

4.
    
This paper proposes a novel approach for physical human-robot interactions (pHRI), where a robot provides guidance forces to a user based on the user performance. This framework tunes the forces in regards to behavior of each user in coping with different tasks, where lower performance results in higher intervention from the robot. This personalized physical human-robot interaction (p2HRI) method incorporates adaptive modeling of the interaction between the human and the robot as well as learning from demonstration (LfD) techniques to adapt to the users' performance. This approach is based on model predictive control where the system optimizes the rendered forces by predicting the performance of the user. Moreover, continuous learning of the user behavior is added so that the models and personalized considerations are updated based on the change of user performance over time. Applying this framework to a field such as haptic guidance for skill improvement, allows a more personalized learning experience where the interaction between the robot as the intelligent tutor and the student as the user, is better adjusted based on the skill level of the individual and their gradual improvement. The results suggest that the precision of the model of the interaction is improved using this proposed method, and the addition of the considered personalized factors to a more adaptive strategy for rendering of guidance forces.   相似文献   

5.
人与机器人的交互过程中,情感因素的引入能够使人机交流更加自然和谐.因此,完整的人工情感模型的建立是首要解决的问题.基于情感能量理论基础,首先,提出了心境自发转移和刺激转移模型.其次,结合情绪自发转移的马尔可夫链模型和刺激转移的HMM模型,将心境和情绪的自发和刺激转移过程统一在一个框架下.最后,将完整的人工情感模型软件化并应用于儿童玩伴机器人上,在接受非结构化环境与用户的信息输入后,个性化的情感软件模块产生输出,实现针对儿童用户的玩伴机器人个性化交互,通过应用验证了该模型的有效性.  相似文献   

6.
王楠  吴成东  王明辉  李斌 《机器人》2011,33(2):202-207
针对灾难救援应用领域具体需求,提出了控制站系统的设计原则.基于人机交互技术,设计了可变形灾难救援机器人控制站系统,该系统具有感知信息完整、操控灵活、界面友好、交互性强等特点.通过灾难救援模拟环境进行实验,验证丁该控制站系统可以实现机器人在复杂环境中的运动控制、多通道信息交互等功能,在灾难救援等领域具有可行性及有效性.  相似文献   

7.
    
A facial expression emotion recognition based human-robot interaction (FEER-HRI) system is proposed, for which a four-layer system framework is designed. The FEERHRI system enables the robots not only to recognize human emotions, but also to generate facial expression for adapting to human emotions. A facial emotion recognition method based on 2D-Gabor, uniform local binary pattern (LBP) operator, and multiclass extreme learning machine (ELM) classifier is presented, which is applied to real-time facial expression recognition for robots. Facial expressions of robots are represented by simple cartoon symbols and displayed by a LED screen equipped in the robots, which can be easily understood by human. Four scenarios, i.e., guiding, entertainment, home service and scene simulation are performed in the human-robot interaction experiment, in which smooth communication is realized by facial expression recognition of humans and facial expression generation of robots within 2 seconds. As a few prospective applications, the FEERHRI system can be applied in home service, smart home, safe driving, and so on.   相似文献   

8.
为改善基于力信息的人机协调运动中人机交互力,采用了在人机接口中设置弹性元件的方法,建立了具有柔性人机接口的人机交互力学模型。在已有鲁棒自适应阻抗控制方法的基础上进行改进,提出了一种基于柔性人机接口的自适应阻抗控制方法。此控制方法是对阻抗外环位置速度进行比例补偿,对力控制内环采用模糊PID (proportion integral differential)控制,实现改进自适应阻抗算法,从而提高了位置跟随精度,并有效减小了人机交互力。分析了人机接口中弹性元件对控制效果的影响,获得了不同刚度系数时,交互力控制效果和位置跟随精度。在此基础上,建立了试验系统,完成了试验。人机协调运动试验结果显示:应用柔性人机接口和改进后的控制方法具有更好的人机交互力控制效果。标准运动输入试验结果显示:改进后的控制方法具有更好的人机交互力控制效果和更高的位置跟随精度;人机交互力大小、位置跟踪准确性与人机接口刚度系数大小均成正比。  相似文献   

9.
During a human-exoskeleton collaboration, the interaction torque on exoskeleton resulting from the human cannot be clearly determined and conducted by normal physical models. This is because the torque depends not only on direction and orientation of both human-operator and exoskeleton but also on the physical properties of each operator. In this paper, we present our investigations on the relationship between the interaction torques with the dynamic factors of the human-exoskeleton systems using state-of-the-art learning techniques (nonparametric regression techniques) and provide control applications based on the findings. Exper- imental data was collected from various human-operators when they were attached to the designed exoskeleton to perform unconstraint motions with and without control. The results showed that regardless of how the ex- periments were done and which learning method was chosen, the resulting interaction could be best represented by time varying non-linear mappings of the operator's angular position, and the exoskeleton's angular position, velocity, and acceleration during locomotion. This finding has been applied to advanced controls of the lower exoskeletal robots in order to improve their performance while interacting with human.  相似文献   

10.
自动驾驶车辆的本质是轮式移动机器人,是一个集模式识别、环境感知、规划决策和智能控制等功能于一体的综合系统。人工智能和机器学习领域的进步极大推动了自动驾驶技术的发展。当前主流的机器学习方法分为:监督学习、非监督学习和强化学习3种。强化学习方法更适用于复杂交通场景下自动驾驶系统决策和控制的智能处理,有利于提高自动驾驶的舒适性和安全性。深度学习和强化学习相结合产生的深度强化学习方法成为机器学习领域中的热门研究方向。首先对自动驾驶技术、强化学习方法以及自动驾驶控制架构进行简要介绍,并阐述了强化学习方法的基本原理和研究现状。随后重点阐述了强化学习方法在自动驾驶控制领域的研究历史和现状,并结合北京联合大学智能车研究团队的研究和测试工作介绍了典型的基于强化学习的自动驾驶控制技术应用,讨论了深度强化学习的潜力。最后提出了强化学习方法在自动驾驶控制领域研究和应用时遇到的困难和挑战,包括真实环境下自动驾驶安全性、多智能体强化学习和符合人类驾驶特性的奖励函数设计等。研究有助于深入了解强化学习方法在自动驾驶控制方面的优势和局限性,在应用中也可作为自动驾驶控制系统的设计参考。  相似文献   

11.
王萌  孙雷  尹伟  董帅  刘景泰 《自动化学报》2017,43(8):1319-1328
对于串联弹性驱动器(Series elastic actuator,SEA)而言,已有方法大都将其弹性组件视为线性弹簧.然而为了追求更高的能量密度,SEA的机械结构越来越复杂,使其控制问题更具挑战性;此外,现有方法均未考虑当SEA应用于交互系统中,其负载端动力学模型会产生剧烈变化的情况.针对这些问题,本文设计了一种面向交互应用的自适应滑模控制方法.具体而言,首先在考虑了非线性SEA输出特性及系统中可能存在的扰动的情况下,描述了SEA系统的动力学方程,并对其进行了分析和变换.在此基础上设计了负载运动观测器和自适应滑模控制器,使得本文方法能够在负载端动力学模型完全未知的情况下完成SEA的力矩控制.最后通过引入辅助系统,对输入饱和的情况进行了有效的处理.通过理论分析证明了闭环控制系统的稳定性及信号有界性,随后的仿真与实验结果也表明了这种自适应滑模控制器良好的控制性能和对不确定性因素的鲁棒性.  相似文献   

12.
    
Reinforcement learning (RL) has roots in dynamic programming and it is called adaptive/approximate dynamic programming (ADP) within the control community. This paper reviews recent developments in ADP along with RL and its applications to various advanced control fields. First, the background of the development of ADP is described, emphasizing the significance of regulation and tracking control problems. Some effective offline and online algorithms for ADP/adaptive critic control are displayed, where the main results towards discrete-time systems and continuous-time systems are surveyed, respectively. Then, the research progress on adaptive critic control based on the event-triggered framework and under uncertain environment is discussed, respectively, where event-based design, robust stabilization, and game design are reviewed. Moreover, the extensions of ADP for addressing control problems under complex environment attract enormous attention. The ADP architecture is revisited under the perspective of data-driven and RL frameworks, showing how they promote ADP formulation significantly. Finally, several typical control applications with respect to RL and ADP are summarized, particularly in the fields of wastewater treatment processes and power systems, followed by some general prospects for future research. Overall, the comprehensive survey on ADP and RL for advanced control applications has demonstrated its remarkable potential within the artificial intelligence era. In addition, it also plays a vital role in promoting environmental protection and industrial intelligence.  相似文献   

13.
    
This study deals with reliable control problems in data-driven cyber-physical systems(CPSs) with intermittent communication faults, where the faults may be caused by bad or broken communication devices and/or cyber attackers. To solve them, a watermark-based anomaly detector is proposed, where the faults are divided to be either detectable or undetectable.Secondly, the fault's intermittent characteristic is described by the average dwell-time(ADT)-like concept, and then the reliable control issues, under the undetectable faults to the detector, are converted into stabilization issues of switched systems. Furthermore,based on the identifier-critic-structure learning algorithm, a datadriven switched controller with a prescribed-performance-based switching law is proposed, and by the ADT approach, a tolerated fault set is given. Additionally, it is shown that the presented switching laws can improve the system performance degradation in asynchronous intervals, where the degradation is caused by the fault-maker-triggered switching rule, which is unknown for CPS operators. Finally, an illustrative example validates the proposed method.  相似文献   

14.
于镝 《控制理论与应用》2020,37(9):1963-1970
针对输入受限的受扰多智能体网络,提出具有领航层、估计层、控制层和跟随者层的新型鲁棒包容控制方案.首先,设计有限时间估值器获得跟随者的期望状态,然后基于包容误差引入非均方折扣代价函数,从而将鲁棒包容控制问题转换成受限最优控制问题.并应用Laypunov拓展原理证明得到的最优控制策略使得网络实现一致最终有界稳定.在系统动态完全未知的情况下,采用提出的积分增强学习算法和执行器–评价器结构,在线得到近似最优控制策略.仿真结果验证了理论方案的有效性和可行性.  相似文献   

15.
This paper deals with the model-free adaptive control (MFAC) based on the reinforcement learning (RL) strategy for a family of discrete-time nonlinear processes. The controller is constructed based on the approximation ability of neural network architecture, a new actor-critic algorithm for neural network control problem is developed to estimate the strategic utility function and the performance index function. More specifically, the novel RL-based MFAC scheme is reasonable to design the controller without need to estimate y(k+1) information. Furthermore, based on Lyapunov stability analysis method, the closed-loop systems can be ensured uniformly ultimately bounded. Simulations are shown to validate the theoretical results.  相似文献   

16.
人-机器人技能传递研究进展   总被引:2,自引:1,他引:1       下载免费PDF全文
曾超  杨辰光  李强  戴诗陆 《自动化学报》2019,45(10):1813-1828
人-机器人技能传递(Human-robot skill transfer,HRST)是指人将操作技能传授给机械臂使得机器人具备类人化的作业能力,以达到高效示教编程的目的.相对于传统的机器人编程技术,人机技能传递具有高效率、低成本、不依赖机器本体平台等显著优点,是人-信息-机器人融合系统(Human-cyber-robot-systems,HCRS)中重要环节之一,应当给予足够的重视.本文首先介绍了人机技能传递技术的研究背景,接着简述了该技术在人机接口、建模、仿生自适应控制等方面的发展现状,并对未来的研究方向做出了展望.  相似文献   

17.
刘德荣  李宏亮  王鼎 《自动化学报》2013,39(11):1858-1870
自适应动态规划(Adaptive dynamic programming, ADP)方法可以解决传统动态规划中的\"维数灾\"问题, 已经成为控制理论和计算智能领域最新的研究热点. ADP方法采用函数近似结构来估计系统性能指标函数, 然后依据最优性原理来获得近优的控制策略. ADP是一种具有学习和优化能力的智能控制方法, 在求解复杂非线性系统的最优控制问题中具有极大的潜力. 本文对ADP的理论研究、算法实现、相关应用等方面进行了全面的梳理, 涵盖了最新的研究进展, 并对ADP的未来发展趋势进行了分析和展望.  相似文献   

18.
    
This article studies the adaptive optimal output regulation problem for a class of interconnected singularly perturbed systems(SPSs) with unknown dynamics based on reinforcement learning(RL). Taking into account the slow and fast characteristics among system states, the interconnected SPS is decomposed into the slow time-scale dynamics and the fast timescale dynamics through singular perturbation theory. For the fast time-scale dynamics with interconnections, we devise a decentralized optimal co...  相似文献   

19.
本文针对模型参数未知且状态不可测的线性离散系统的线性二次型最优控制问题,提出了一种数据驱动的基于输出反馈逆强化Q学习的最优控制方法,利用系统的输入输出数据同时确定合适的二次型性能指标权重和最优控制律,使得系统运行轨迹与参考轨迹一致.本文首先提出一个参数矫正方程并与逆最优控制相结合得到一种基于模型的逆强化学习最优控制框架,实现输出反馈控制律参数和性能指标加权项的矫正.在此基础上,本文引入强化Q学习思想提出了数据驱动的输出反馈逆强化Q学习最优控制方法,无需知道系统模型参数,仅利用历史输入输出数据对输出反馈控制律参数和性能指标加权项进行求解.理论分析与仿真实验验证了所提方法的有效性.  相似文献   

20.
针对公共场合密集人群在紧急情况下疏散的危险性和效果不理想的问题,提出一种基于深度Q网络(DQN)的人群疏散机器人的运动规划算法。首先通过在原始的社会力模型中加入人机作用力构建出人机社会力模型,从而利用机器人对行人的作用力来影响人群的运动状态;然后基于DQN设计机器人运动规划算法,将原始行人运动状态的图像输入该网络并输出机器人的运动行为,在这个过程中将设计的奖励函数反馈给网络使机器人能够在“环境行为奖励”的闭环过程中自主学习;最后经过多次迭代,机器人能够学习在不同初始位置下的最优运动策略,最大限度地提高总疏散人数。在构建的仿真环境里对算法进行训练和评估。实验结果表明,与无机器人的人群疏散算法相比,基于DQN的人群疏散机器人运动规划算法使机器人在三种不同初始位置下将人群疏散效率分别增加了16.41%、10.69%和21.76%,说明该算法能够明显提高单位时间内人群疏散的数量,具有灵活性和有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号