首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 82 毫秒
1.
社会网络信息的可信度问题近年来受到了相当大的关注。谣言的散播可能造成社会恐慌,引发信任危机。在国内,新浪微博用户量的快速增长,使其成为了谣言传播的温床。及时清理在新浪微博中传播的谣言,对于社会的和谐发展有着现实的意义。该文以新浪微博为背景,将谣言检测任务作为分类问题,首次提出将微博评论的情感倾向作为谣言检测分类器的一项特征。实验结果表明,引入评论的评论情感倾向特征后,使得谣言检测的分类结果得到了可观的提升。  相似文献   

2.
针对新浪微博评论信息准确分类问题,本文基于遗传算法(genetic algorithm, GA)、粒子群算法(particle swarm optimization, PSO)和支持向量机(support vector machine, SVM)算法,提出一种改进GA-IPSO-BSVM (genetic algorithm-improved particle swarm optimization-balanced support vector machine)的分类模型,以实现提升新浪微博评论信息分类的准确性和收敛性.首先,为了有效提升算法的收敛速度,并高效节省计算资源,该模型在迭代前期引入GA的淘汰机制,删除大量低速粒子.其次,在迭代中期,为了避免算法陷入局部最优解,改进PSO中粒子关系的拓扑结构,采用K均值聚类(K-means)算法对粒子群进行聚类分区,将各粒子群体在所属社区中进行粒子群迭代,选出各个区域中优秀粒子.再次,在迭代后期,将所有区域优秀粒子组合成优秀粒子群体,并将该群体进行迭代,得出全局最优解.从次,结合GA和IPSO对BSVM进行超参数优化,提升分类准确率.最后,利...  相似文献   

3.
信息化时代下,广泛传播的谣言极大地影响了人们的日常生活,甚至威胁了社会稳定,因此对谣言的检测任务具有现实意义.目前基于深度学习模型的谣言检测方法忽略了事件之间的联系或事件之间联系的紧密程度,对检测效果造成了一定影响.本文考虑事件之间联系的异质性,将事件之间联系的紧密程度描述为连边权重,提出了一种基于加权图卷积神经网络(...  相似文献   

4.
随着新浪微博的广泛使用,新浪微博传播的内容涵盖了各种领域的信息,涉及范围越来越广;同时,当用户浏览消息时,不仅能够表达自己的看法,同时能够看到别人的观点。因此,当用户无法判断问题的客观性时,通常会利用其他公众的反馈信息进行评估。为了充分利用公众反馈信息,提出了一种描述公众反馈信息的社会属性——争议度。给出了争议度的概念并构建了争议度计算模型,该模型将公众对微博的反应(即表态、评论、转发等行为)作为争议度的影响因素,通过情感分析等技术计算微博消息的争议度。实验结果对照人工标注结果,模型准确率达到93%,有效率达84%,证明了该模型的可行性。  相似文献   

5.
黄铃  李学明 《计算机应用》2013,33(12):3563-3566
针对微博上存在的大量垃圾评论,提出一种基于AdaBoost的微博垃圾评论识别方法。该方法首先提取表示微博评论的特征值向量,由8个特征值组成,然后通过AdaBoost算法在这些特征上训练出若干个比随机预测好的弱分类器,最后将得到的弱分类器加权集合成高精度的强分类器。从实际的热门新浪微博中提取评论数据集进行实验,结果表明所选取的8个特征是有效的,该方法对于微博垃圾评论的识别拥有较高的识别率。  相似文献   

6.
本文研究基于机器学习的突发事件微博谣言识别方面所取得的成果。对谣言识别技术研究现状、谣言识别算法及相关技术、基于机器学习的微博谣言识别技术进行总结分析。采用深度学习方法已能将微博谣言识别的准确率、召回率、F1值等模型评价标准值提高到0.8以上,从谣言数据的基础特征扩展到传播特征、时间跨度特征甚至时情感特征等影响识别精度的因素特征。机器学习算法已发展日趋成熟,未来若能实现算法的自学习,自动完成特定时间节点的提取分类,实现对谣言快速有效地识别,将成为谣言识别方面的重大突破成果。  相似文献   

7.
8.
对新浪微博最新的OAuth 2 API进行了深入的研究,并利用Python语言和Web自动化测试工具Selenium构造了一套自动认证和访问数据的微博API,可用于微博语料构建.  相似文献   

9.
《软件》2019,(4):182-185
在大数据时代下,新浪微博的出现为人们获取和参与信息数据及其传播提供了全新的途径。而面对新浪微博不断增加的信息数据,人们对于提高微博获取的精确性和时效性也提出了更高的要求。在这一背景下,本文将重点围绕基于Python的新浪微博爬虫进行简要分析研究,在对Python与网络爬虫的基本概念进行明确的基础上,尝试设计一种Python的新浪微博爬虫程序,为相关研究人员提供相应理论参考。  相似文献   

10.
11.
周中华  张惠然  谢江 《计算机应用》2014,34(11):3131-3134
目前很多的社交网络研究都是采用国外的平台数据,而国内的新浪微博没有很好的接口方便研究人员采集数据进行分析。为了快速地获取到微博中的数据,开发了一款支持并行的微博数据抓取工具。该工具可以实时抓取微博中指定用户的粉丝信息、微博正文等内容;该工具利用关键字匹配技术,匹配符合规定条件的微博,并抓取相关内容;该工具支持并行抓取,可以同时抓取多个用户的信息。最后将串行微博爬虫工具和其并行版本进行对比,并使用该工具对部分微博数据作了一个关于流感问题的分析。实验结果显示:并行爬虫拥有较好的加速比,可以快速地获取数据,并且这些数据具有实时性和准确性。  相似文献   

12.
当前的影响力分析算法大多基于网络拓扑结构或用户交互信息,然而单一方面的方法会使挖掘结果出现较大的偏差,目前缺乏全面准确的影响力挖掘方法。本文通过对传统PageRank算法进行扩展,提出一种面向新浪微博的基于用户交互度连接属性的TCRank算法;其次设计了3种微博意见领袖特征指标,并对其加权求和用于意见领袖候选集的精化操作;同时提出一种基于卷积神经网络模型的情感支持度的意见领袖抽取算法,对意见领袖候选集进行最终排名。最后,通过实验验证所提出算法的有效性。  相似文献   

13.
基于新浪微博用户之间的关注关系网络,分析了衡量微博用户影响力的三个指标--粉丝数、User PR值以及用户活跃度,发现粉丝数分布和User PR值分布均服从幂律分布,活跃度分布不同于前两种分布。分别对三种排名靠前的用户及其发布的微博进行分析,发现排名靠前的用户中,User PR值的认证用户多于粉丝数;活跃度排名靠前的用户在广告营销活动中受到广泛的青睐;新浪微博用户乐于转发和评论他人的微博,微博中嵌入了大量的图片、视频和链接。  相似文献   

14.
The purpose of this paper is to investigate the characteristics of the dissemination of information in the community. A variety of possible factors that affect the dissemination of information in Sina Weibo have been discussed. By analyzing the process of the information dissemination in the community of Sina Weibo, we found the information dissemination of Weibo community and the dynamic model are very similar. With the aid of data intensive computing theory, the various features have been mined and modeled. The dynamic model is improved and redefined to characterize the community. Then the SEINR model is proposed. The basic reproductive number, the existence of equilibrium point and the stability of the network are analyzed and proved in detail. By comparing with real data in Weibo community, we show that the SEINR model accurately reflects the dissemination of information community. Furthermore, we investigate the SEINR model in detail to show the influences of different parameters on information dissemination by simulations.  相似文献   

15.
随着社交网络平台的发展,社交网络已经成为人们获取信息的重要来源.然而社交网络的便利性也导致了虚假谣言的快速传播.与纯文本的谣言相比,带有多媒体信息的网络谣言更容易误导用户以及被传播,因此对多模态的网络谣言检测在现实生活中有着重要意义.研究者们已提出若干多模态的网络谣言检测方法,但这些方法都没有充分挖掘出视觉特征和融合文...  相似文献   

16.
微博流行度预测是根据微博早期的传播特征来预测其未来的传播范围.目前的主要方法是根据信息早期传播的流行度进行预测,忽略了传播速度变化的趋势,这导致此类方法在预测微博消息未来流行度时准确性较差.为了更准确和方便地预测微博未来流行度,提出了一个多元线性回归模型:用户活跃度及传播加速度(user activity propagation acceleration, UAPA)模型.首先,研究了未来流行度与早期传播趋势变化的联系,发现两者存在正相关关系,根据这个发现,提出了传播加速度的概念,并基于传播加速度和早期流行度建立了预测模型.然后,分析了微博用户周期性的活动现象并发现用户转发数量在一天的不同时刻差异很大,传播加速度和流行度也不同.基于这种情况,根据用户活跃性优化了预测模型.最后在2个真实数据集(分别有100万和41万条微博)上对比了UAPA模型与业内代表性流行度预测方法的预测准确度,分析了模型中参数取值对于预测效果的影响.实验表明:提出的UAPA模型在多个性能指标上都优于现有方法.  相似文献   

17.
微博谣言的广泛传播给当今社会造成了日益严峻的负面影响。基于深度神经网络的方法存在缺少大量带标签的数据。研究发现,谣言经常伴随负面情感,而非谣言则伴随正面情感,考虑到谣言与非谣言之间表现出的相反情感倾向性,提出一种将谣言检测和情感分析这两个高度相关的任务结合起来学习的多任务学习方法,为了尽可能多地挖掘不同任务之间的关联,全面分析谣言检测任务的特征,设计了一个由BERT和BiGRU联合的多任务学习框架(BERT-BiGRU-MTL,BBiGM)。利用权值共享的方法对两个任务进行联合训练,同时提取出任务之间的共同特征和针对谣言检测任务的特定特征,利用情感分析任务辅助谣言检测。研究结果表明,该方法在准确率、精确率、F1值评测指标上优于采用单任务学习的方法。  相似文献   

18.
杨超  秦廷栋  范波  李涛 《计算机科学》2018,45(11):138-142, 159
将人工免疫危险理论引入到用户行为特征的分析中,以有效地识别微博水军用户。以新浪微博为例,分析了新浪微博水军的行为特征,选取微博总数、微博等级、是否认证、阳光信用、粉丝数等特征属性,将属性分析结果作为区别水军与正常用户的特征信号,并基于树突状细胞算法(Dendritic Cells Algorithm,DCA)实现新浪微博水军的识别。使用新浪微博用户的真实数据对算法的有效性进行了验证和对比实验,结果表明该方法能够有效检测出新浪微博中的水军用户,具有较高的检测准确率。  相似文献   

19.
以 STM32F103RC 处理器为核心,结合 WIZnet 公司的 W5500以太网接口芯片,基于新浪微博二次开发接口,设计了嵌入式新浪微博客户端,从而实现微博社交网络与智能嵌入式系统的互动交流。测试结果表明,该系统功耗低,性能稳定可靠,具有一定的实际应用价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号