首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Y.M. Kang  J.H. Choi  P.K. Song 《Thin solid films》2010,518(11):3081-3668
Ce-doped indium tin oxide (ITO:Ce) films were deposited on flexible polyimide substrates by DC magnetron sputtering using ITO targets containing various CeO2 contents (CeO2 : 0, 0.5, 3.0, 4.0, 6.0 wt.%) at room temperature and post-annealed at 200 °C. The crystallinity of the ITO films decreased with increasing Ce content, and it led to a decrease in surface roughness. In addition, a relatively small change in resistance in dynamic stress mode was obtained for ITO:Ce films even after the annealing at high temperature (200 °C). The minimum resistivity of the amorphous ITO:Ce films was 3.96 × 10− 4 Ωcm, which was deposited using a 3.0 wt.% CeO2 doped ITO target. The amorphous ITO:Ce films not only have comparable electrical properties to the polycrystalline films but also have a crystallization temperature > 200 °C. In addition, the amorphous ITO:Ce film showed stable mechanical properties in the bended state.  相似文献   

2.
Tin doped indium oxide (ITO) and fluorine doped tin oxide (FTO) thin films have been prepared by one step spray pyrolysis. Both film types grown at 400 °C present a single phase, ITO has cubic structure and preferred orientation (4 0 0) while FTO exhibits a tetragonal structure. Scanning electron micrographs showed homogeneous surfaces with average grain size around 257 and 190 nm for ITO and FTO respectively.The optical properties have been studied in several ITO and FTO samples by transmittance and reflectance measurements. The transmittance in the visible zone is higher in ITO than in FTO layers with a comparable thickness, while the reflectance in the infrared zone is higher in FTO in comparison with ITO. The best electrical resistivity values, deduced from optical measurements, were 8 × 10−4 and 6 × 10−4 Ω cm for ITO (6% of Sn) and FTO (2.5% of F) respectively. The figure of merit reached a maximum value of 2.15 × 10−3 Ω−1 for ITO higher than 0.55 × 10−3 Ω−1 for FTO.  相似文献   

3.
Transparent, conducting, indium tin oxide (ITO) films have been deposited, by pulsed dc magnetron sputtering, on glass and electroactive polymer (poly(vinylidene fluoride)—PVDF) substrates. Samples have been prepared at room temperature by varying the oxygen partial pressure. Electrical resistivity around 8.4 × 10− 4 Ω cm has been obtained for films deposited on glass, while a resistivity of 1.7 × 10− 3 Ω cm has been attained in similar coatings on PVDF. Fragmentation tests were performed on PVDF substrates with thicknesses of 28 μm and 110 μm coated with 40 nm ITO layer. The coating's fragmentation process was analyzed and the crack onset strain and cohesive strength of ITO layers were evaluated.  相似文献   

4.
Transparent indium tin oxide (ITO) thin films have been deposited by the dip-coating process on silica substrates using solutions of 2,4-pentanedione, ethanol, indium and tin salts. The films have been first dried in air at 260 °C for 10 min and then annealed in a reducing atmosphere at different temperatures for various durations. The resistivity of ITO layers was found to decrease with increasing the metal concentration of the starting solution or the annealing temperature. Hence, by adjusting both metal concentration in the coating solution and heat-treatment, resistivities lower than 5 × 10− 3 Ω cm for an annealing temperature of 550 °C and lower than 2 × 10− 2 Ω cm for an annealing temperature of 300 °C, were obtained. These results are correlated with the density and the size of ITO grains in the films.  相似文献   

5.
We report on the influence of additives on the electrical, optical, morphological and mechanical properties of transparent conductive indium tin oxide (In2O3:Sn; ITO) nanoparticle films by the use of polymers as matrix material. Key issues to fabricate layers suitable for use in electronic device applications are presented. Polyvinyl derivatives polyvinyl acetate, polyvinyl alcohol (PVA) and polyvinyl butyral were applied and their suitability to form transparent conductive ITO nanocomposite coatings at a maximum process temperature of 130 °C was investigated. A low-temperature treatment with UV-light has been developed to provide the possibility of curing ITO thin films deposited on substrates which do not withstand high process temperatures. Compared to best pure ITO layers (0.2 Ω− 1 cm− 1), the ITO-PVA nanocomposite coatings show a conductance value of 4.1 Ω− 1 cm− 1 and 5.9 Ω− 1 cm− 1 after reducing in forming gas. Sheet resistance of ca. 1200 Ω/□ with coexistent transmittance of 85% at 550 nm for a layer thickness of about 1.45 μm was achieved. The conductance enhancement is a consequence of nanoparticulate ITO network densification due to the acting shrinkage forces caused by the polymer matrix during film drying and additionally UV-induced crosslinking of PVA.  相似文献   

6.
Cetyltrimethyl ammonium bromide (CTAB) templated mesoporous indium tin oxide (ITO) thin films were deposited on quartz plates by an evaporation-induced self-assembly (EISA) process using a dip coating method. The starting solution was prepared by mixing indium chloride, tin chloride, and CTAB dissolved in ethanol. Five to fifty mole percent Sn-doped ITO films were prepared by heat-treatment at 400 °C for 5 h. The structural, adsorptive, electrical, and optical properties of mesoporous ITO thin films were investigated. Results indicate that the mesoporous ITO thin films have an ordered two-dimensional hexagonal (p6mm) structure, with nanocrystalline domains in the inorganic oxide framework. The continuous thin films have highly ordered pore sizes (>20 Å), high Brunauer-Emmett-Teller (BET) surface area up to 340 m2/g, large pore volume (>0.21 cm3/g), outstanding transparency in the visible range (>80%), and show a minimum resistivity of ρ = 1.2 × 10−2 Ω cm.  相似文献   

7.
In order to investigate the possible application of ZnO films as a transparent conducting oxide (TCO) electrode for AC PDP, ZnO:Al films were prepared by DC magnetron sputtering method. The effects of discharge power and doping concentration on the structural and electrical properties of ZnO films were mainly studied experimentally. Five-inch PDP cells using either a ZnO:Al or indium tin oxide (ITO) electrode were also fabricated separately under the same manufacturing conditions. The luminous properties of both the PDP cells were measured and compared with each other.By doping the ZnO target with 2 wt% of Al2O3, the film deposited at a discharge power of 40 W resulted in the minimum resistivity of 8.5 × 10−4 Ω-cm and a transmittance of 91.7%. However, a high doping concentration of 3 wt% of Al2O3 and excessive sputtering power over 40 W may induce high defect density and limit the growth of small grains. Although the luminance and luminous efficiency of the cell using ZnO:Al are lower than those of the cell with the ITO electrode by about 10%, these values are sufficient enough to be considered for the normal operation of AC PDP.  相似文献   

8.
S.I. Kim  P.K. Song 《Thin solid films》2010,518(11):3085-1185
Tin-doped indium oxide (ITO) films were deposited on polyethylene terephthalate substrates by RF superimposed DC magnetron sputtering using an ITO target composed of In2O3 (90 wt.%):SnO2 (10 wt.%). The total sputtering power was maintained at 70 W and the power ratio of RF/(RF + DC) was varied from 0 to 100% in steps of 25%. The discharge voltage and deposition rate decreased with increasing RF/(RF + DC) power ratio. The ITO film deposited at a 50% RF portion of the total power showed the lowest resistivity (3.18 × 10− 4 Ωcm), high transmittance (87.5%) and relatively good mechanical durability, which was evaluated using bending and scratch tests.  相似文献   

9.
In this research, we studied the effect of deflection on the characteristics of an indium tin oxide (ITO) film deposited on a flexible polyethylene terephthalate flexible substrate by pulse magnetron sputtering. The experimental results show that an increase in the ITO film thickness leads to an increase in the residual stress and a decrease in the adhesion. Under power of 80 W, pulse frequency of 10 kHz, pulse reverse time of 2 μs, and ITO film thickness of 100 nm, thin film with an optimized resistivity of 4.5 × 10− 4 Ω-cm, visible light transmittance of more than 84%, and adhesion of class 5B/0 as per the ASTM/ISO standards. Micro-cracking was observed on the ITO film surface when the film thickness was greater than 100 nm and when the deflection was carried out for 100 times. Micro-cracking led to an increase in the residual stress and deterioration in the adhesion properties.  相似文献   

10.
Indium tin oxide (ITO) films were deposited on glass substrates by rf magnetron sputtering using a ceramic target (In2O3-SnO2, 90-10 wt%) without extra heating. The post annealing was done in air and in vacuum, respectively. The effects of annealing on the structure, surface morphology, optical and electrical properties of the ITO films were studied. The results show that the increase of the annealing temperature improves the crystallinity of the films, increases the surface roughness, and improves the optical and electrical properties. The transmittance of the films in visible region is increased over 90% after the annealing process in air or in vacuum. The resistivity of the films deposited is about 8.125×10−4 Ω cm and falls down to 2.34×10−4 Ω cm as the annealing temperature is increased to 500°C in vacuum. Compared with the results of the ITO films annealed in air, the properties of the films annealed in vacuum is better.  相似文献   

11.
We report on transparent conductive indium tin oxide (In2O3:Sn; ITO) nanoparticle films processed at a low temperature of 130 °C for the application in lighting devices using spin coating and doctor blading techniques. Major emphasis is put on the beneficial application of the particular transparent electrode material for the fabrication of patterned large area electroluminescence lamps. In order to improve film properties like adhesion and conductivity, hybrid nanoparticle-polymer blends out of ITO particles and organic film-forming agent polyvinylpyrrolidone (PVP) and the organofunctional coupling agent 3-methacryloxypropyltrimethoxysilane (MPTS) have been developed. The layers were cured by UV-irradiation, which was also used for lateral structuring of the transparent, conductive electrode. Additional low-temperature heat treatment (T = 130 °C) in air and forming gas improved the electronic properties. While pure ITO nanoparticulate layers processed at 130 °C exhibited conductance of up to 3.1 Ω− 1 cm− 1, the nanocomposite coatings showed a conductance of up to 9.8 Ω− 1 cm− 1. Corresponding layers with a sheet resistance of 750 Ω/□ were applied in electroluminescent lamps.  相似文献   

12.
Indium tin oxide (ITO) thin films were deposited on unheated polyethylene naphthalate substrates by radio-frequency (rf) magnetron sputtering from an In2O3 (90 wt.%) containing SnO2 (10 wt.%) target. We report the structural, electrical and optical properties of the ITO films as a function of rf power and deposition time. Low rf power values, in the range of 100-130 W, were employed in the deposition process to avoid damage to the plastic substrates by heating caused by the plasma. The films were analyzed by X-ray diffraction and optical transmission measurements. A Hall measurement system was used to measure the carrier concentration and electrical resistivity of the films by the Van der Pauw method. The X-ray diffraction measurements analysis showed that the ITO films are polycrystalline with the bixbite cubic crystalline phase. It is observed a change in the preferential crystalline orientation of the films from the (222) to the (400) crystalline orientation with increasing rf power or deposition time in the sputtering process. The optical transmission of the films was around 80% with electrical resistivity and sheet resistance down to 4.9 × 10- 4 Ωcm and 14 Ω/sq, respectively.  相似文献   

13.
Fluorine-doped tin oxide (FTO) films were prepared at different substrate temperatures by ultrasonic spray pyrolysis technique on glass substrates. Among F-doped tin oxide films, the lowest resistivitiy was found to be 6.2 × 10− 4 Ω-cm for a doping percentage of 50 mol% of fluorine in 0.5 M solution, deposited at 400 °C. Hall coefficient analyses and secondary ion mass spectrometry (SIMS) measured the electron carrier concentration that varies from 3.52 × 1020 cm− 3 to 6.21 × 1020 cm− 3 with increasing fluorine content from 4.6 × 1020 cm− 3 to 7.2 × 1020 cm− 3 in FTO films deposited on various temperatures. Deposition temperature on FTO films has been optimized for achieving a minimum resistivity and maximum optical transmittance.  相似文献   

14.
Tin-doped indium oxide (ITO) thin films were fabricated by the sol-gel spin-coating method with different indium precursor solutions synthesized from In(NO3)3 or InCl3 (denoted as N-ITO and Cl-ITO, respectively). For both N-ITO and Cl-ITO thin films, the increase of mobility/conductivity and the reduction of carrier concentration with increasing annealing temperatures from 400 to 700 °C are related to the increase of crystallization/densification and the annihilation of oxygen vacancies. The refractive index (1.84 at λ = 550 nm), packing density (0.83), conductivity [(234 (Ω-cm)− 1], and optical band gap (3.95 eV) of N-ITO thin films are higher than that of Cl-ITO thin films, which can be attributed to the higher densification, lower crystallinity, and more free charge carriers of N-ITO thin films. These properties make the indium nitrate-derived ITO thin films have better potential applications for some commercial products.  相似文献   

15.
At very low temperatures (< 80 °C), improved performance indium tin oxide (ITO) thin films with a low resistivity of 4.22 × 10−4 Ωcm and high transmittance > 90% at 550 nm were developed using the neutral beam-assisted sputtering (NBAS) technique, which included a cyclic inter-treatment process with an Ar neutral beam. Transmission electron microscopy and electron diffraction showed that the neutral particles with hyper-thermal energy was able to enhance the formation of the nano-crystalline phase and activate the dopant without additional heating or plasma damage during ITO thin film deposition.  相似文献   

16.
Electrical and optical properties of polycrystalline films of W-doped indium oxide (IWO) were investigated. These films were deposited on glass substrate at 300 °C by d.c. magnetron sputtering using ceramic targets. The W-doping in the sputter-deposited indium oxide film effectively increased the carrier density and the mobility and decreased the resistivity. A minimum resistivity of 1.8 × 10− 4 Ω cm was obtained at 3.3 at.% W-doping using the In2O3 ceramic targets containing 7.0 wt.% WO3. The 2.2 at.% W-doped films obtained from the targets containing 5.0 wt.% WO3, showed the high Hall mobility of 73 cm2 V− 1 s− 1 and relatively low carrier density of 2.9 × 1020 cm− 3. Such properties resulted in novel characteristics of both low resistivity (3.0 × 10− 4 Ω cm) and high transmittance in the near-infrared region.  相似文献   

17.
The optical, electrical and mechanical properties of indium tin oxide (ITO) films prepared on polyethylene terephthalate (PET) substrates by ion beam assisted deposition at room temperature were investigated. The properties of ITO films can be improved by introducing a buffer layer of silicon dioxide (SiO2) between the ITO film and the PET substrate. ITO films deposited on SiO2-coated PET have better crystallinity, lower electrical resistivity, and improved resistance stability under bending than those deposited on bare PET. The average transmittance and the resistivity of ITO films deposited on SiO2-coated PET are 85% and 0.90 × 10− 3 Ω cm, respectively, and when the films are bent, the resistance remains almost constant until a bending radius of 1 cm and it increases slowly under a given bending radius with an increase of the bending cycles. The improved resistance stability of ITO films deposited on SiO2-coated PET is mainly attributed to the perfect adhesion of ITO films induced by the SiO2 buffer layer.  相似文献   

18.
Highly oriented and transparent indium tin oxide (ITO) films have been deposited onto glass substrates by radio frequency magnetron sputtering at 648 K, under an oxygen partial pressure of 1 Pa. The effect of the sputtering power and annealing was studied. Transmission was measured with a double beam spectrometer and electrical analysis using four probe and Hall effect setup. Structural characterization of the films was done by X-ray diffraction. Characterization of the coatings revealed an electrical resistivity below 6.5 × 10− 3 Ω cm. The ITO films deposited at 648 K were amorphous, while the crystallinity improved after annealing at 700 K. The optical transmittance of the film was more than 80% in the visible region. The surface morphology examined by scanning electron microscopy appears to be uniform over the entire surface area, after annealing. The NO2 sensing properties of the ITO films were investigated. At a working temperature of 600 K, the ITO sensor showed high sensitivity to NO2 gas, at concentrations lower than 50 ppm.  相似文献   

19.
We report on the conductivity and adhesion enhancement of indium tin oxide (In2O3:Sn; ITO) nanoparticle films by the application of polymers as matrix material. We fabricated ITO layers at a maximum process temperature of 130 °C by modifying and spin-coating nanoparticulate ITO dispersions. Dispersions containing the organic film-forming agent polyvinylpyrrolidone (PVP) and the organofunctional coupling agent 3-methacryloxypropyltrimethoxysilane (MPTS) have been developed to obtain transparent and conducting coatings on substrates which do not withstand high process temperatures like polymers or already processed glasses. The layers were cured by UV-irradiation as well as by low-temperature heat treatment (T = 130 °C) in air and under forming gas atmosphere (N2/H2). The influence of the additives on the electrical, optical, morphological and mechanical layer properties is reported. Compared to best pure ITO layers (3.1 Ω− 1 cm− 1), the ITO-MPTS-PVP nanocomposite coatings exhibit a conductance of 9.8 Ω− 1 cm− 1. Stable sheet resistances of 750 Ω/□ at a coexistent transmittance of 86% at 550 nm for a layer thickness of about 1.3 µm were achieved. The conductance enhancement is a consequence of the consolidation of the ITO nanoparticle network due to the acting shrinkage forces caused either by drying in the case of PVP or UV-irradiation induced condensation and polymerization reactions in the case of MPTS.  相似文献   

20.
Akihiko Kono 《Vacuum》2008,83(3):548-551
Tin-doped indium oxide (ITO) films fabricated on glass substrates using a hot-cathode plasma sputtering method exhibited low resistivity of 9.7 × 10−5 Ω cm, which is due to a high carrier density of 2.1 × 1021 cm−3. The change in the number of carriers, N, as a function of film thickness d, strongly suggests that oxygen extraction in the initial stages of ITO film growth on the glass substrate surface, creates oxygen vacancies as an electron carrier source for improvement in the resistivity of the films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号