首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 260 毫秒
1.
In this research, we investigated the TaN etch rate and selectivity with under layer (HfO2) and mask material (SiO2) in inductively coupled CH4/Ar plasma. As the CH4 content increased from 0% to 80% in CH4/Ar plasma, the TaN etch rate was increased from 11.9 to 22.8 nm/min. From optical emission spectroscopy (OES), the intensities for CH [431 nm] and H [434 nm] were increased with the increasing CH4 content from 0% to 100% in CH4/Ar plasma. The results of x-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES) showed no accumulation of etch by-products from the etched surface of TaN thin film. As a result of OES, AES and XPS analysis, we observed the etch by-products from the surfaces, such as Ta-N-CH and N-CH bonds. Based on the experimental results, the TaN etch was dominated by the chemical etching with the assistance of Ar sputtering in reactive ion etching mechanism.  相似文献   

2.
High density TiO2 nanotube film with hexagonal shape and narrow size distribution was fabricated by templating ZnO nanorod array film and sol-gel process. Well-aligned ZnO nanorod array films obtained by aqueous solution method were used as template to synthesize ZnO/TiO2 core-shell structure through sol-gel process. Subsequently, TiO2 nanotube array films survived by removing the ZnO nanorod cores using wet-chemical etching. Polycrystalline anatase TiO2 nanotube films were ∼ 1.5 μm long and ∼ 100 nm in inter diameter with a wall thickness of ∼ 10 nm.  相似文献   

3.
Etching characteristics and the mechanism of HfO2 thin films in Cl2/Ar inductively-coupled plasma were investigated. The etch rate of HfO2 was measured as a function of the Cl2/Ar mixing ratio in the range of 0 to 100% Ar at a fixed gas pressure (6 mTorr), input power (700 W), and bias power (300 W). We found that an increase in the Ar mixing ratio resulted in a monotonic decrease in the HfO2 etch rate in the range of 10.3 to 0.7 nm/min while the etch rate of the photoresist increased from 152.1 to 375.0 nm/min for 0 to 100% Ar. To examine the etching mechanism of HfO2 films, we combined plasma diagnostics using Langmuir probes and quadrupole mass spectrometry with global (zero-dimensional) plasma modeling. We found that the HfO2 etching process was not controlled by ion-surface interaction kinetics and formally corresponds to the reaction rate-limited etch regime.  相似文献   

4.
Thin films of HfAlO3, a high-k material, were etched using inductively-coupled plasma. The dry etching mechanism of the HfAlO3 thin film was studied by varying the Cl2/Ar gas mixing ratio, RF power, direct current bias voltage, and process pressure. The maximum etch rate of the HfAlO3 thin film was 16.9 nm/min at a C12/(C12 + Ar) ratio of 80%. Our results showed that the highest etch rate of the HfAlO3 thin films was achieved by reactive ion etching using Cl radicals, due to the high volatility of the metal-chlorides. Consequently, the increased chemical effect caused an increase in the etch rate of the HfAlO3 thin film. Surface analysis by x-ray photoelectron spectroscopy showed evidence that Hf, Al and O reacted with Cl and formed nonvolatile metal-oxide compounds and volatile metal-chlorides. This effect may be related to the concurrence of chemical and physical pathways in the ion-assisted chemical reaction.  相似文献   

5.
In this study, we investigated to the etch characteristics of indium zinc oxide (IZO) thin films in a CF4/Ar plasma, namely, etch rate and selectivity toward SiO2. A maximum etch rate of 76.6 nm/min was obtained for IZO thin films at a gas mixture ratio of CF4/Ar (25:75%). In addition, etch rates were measured as a function of etching parameters, including adaptively coupled plasma chamber pressure. X-ray photoelectron spectroscopy analysis showed efficient destruction of the oxide bonds by ion bombardment, as well as accumulation of low volatile reaction products on the surface of the etched IZO thin films. Field emission Auger electron spectroscopy analysis was used to examine the efficiency of ion-stimulated desorption of the reaction products.  相似文献   

6.
W.P. Jakubik 《Thin solid films》2007,515(23):8345-8350
A single thin film sensor structure of WO3 (∼ 50 nm) and bilayer sensor structure of WO3 (∼ 50 nm) with a very thin film of palladium (Pd ∼ 18 nm) on the top, have been studied for hydrogen gas-sensing application at ∼ 30 °C and ∼ 50 °C. The structures were obtained by vacuum deposition (first the WO3 and than the Pd film) onto a LiNbO3 Y-cut Z-propagating substrate making use of the surface acoustic wave method and additionally (in this same technological processes) onto a glass substrate with a planar microelectrode array for simultaneously monitoring of the planar resistance of the structure. In the case of a bilayer structure a very good correlation has been observed between these two methods — frequency changes in SAW method correlate very well with decreases of the bilayer structure resistance. These frequency changes are on the level of 2.4 kHz to 4% of hydrogen concentration in dry air, whereas in the case of a single WO3 structure almost no frequency shift is observed.  相似文献   

7.
Etch damage of TiO2 thin films with the anatase phase by capacitively coupled RF Ar plasmas has been investigated. The plasma etching causes a mixed phase of anatase and rutile or the rutile phase. The effect of Ar plasma etching damage on degenerating TiO2 thin films is dependent on gas pressure and etching time. The physical etching effect at a low gas pressure (1.3 Pa) contributes to the degradation: the atomic O concentration at the thin film surface is strongly increased. At a high gas pressure (13-27 Pa) and long etching time (60 min), there are a variety of surface defects or pits, which seem to be similar to those for GaN resulting from synergy effect between particle and UV radiation from the plasmas. For the hydrophilicity, the thin film etched at the high gas pressure and a short etching time (5 min) seems to have no etch damage: its contact angle property is almost similar to that for the as-grown thin film, and is independent of the black light irradiation. This result would probably result from formation of donor-like surface defects such as oxygen vacancy.  相似文献   

8.
Dry etching of indium zinc oxide (IZO) thin films was performed using inductively coupled plasma reactive ion etching in a C2F6/Ar gas. The etch characteristics of IZO films were investigated as a function of gas concentration, coil rf power, dc-bias voltage to substrate, and gas pressure. As the C2F6 concentration was increased, the etch rate of the IZO films decreased and the degree of anisotropy in the etch profile also decreased. The etch profile was improved with increasing coil rf power and dc-bias voltage, and decreasing gas pressure. An X-ray photoelectron spectroscopy analysis confirmed the formation of InF3 and ZnF2 compounds on the etched surface due to the chemical reaction of IZO films with fluorine radicals. In addition, the film surfaces etched at different conditions were examined by atomic force microscopy. These results demonstrated that the etch mechanism of IZO thin films followed sputter etching with the assistance of chemical reaction.  相似文献   

9.
《Vacuum》2012,86(1):1-6
In this research, we investigated the TaN etch rate and selectivity with under layer (HfO2) and mask material (SiO2) in inductively coupled CH4/Ar plasma. As the CH4 content increased from 0% to 80% in CH4/Ar plasma, the TaN etch rate was increased from 11.9 to 22.8 nm/min. From optical emission spectroscopy (OES), the intensities for CH [431 nm] and H [434 nm] were increased with the increasing CH4 content from 0% to 100% in CH4/Ar plasma. The results of x-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES) showed no accumulation of etch by-products from the etched surface of TaN thin film. As a result of OES, AES and XPS analysis, we observed the etch by-products from the surfaces, such as Ta–N–CH and N–CH bonds. Based on the experimental results, the TaN etch was dominated by the chemical etching with the assistance of Ar sputtering in reactive ion etching mechanism.  相似文献   

10.
This study examined the characteristics of Ga:In2O3 (IGO) co-sputtered Zn:In2O3 (IZO) films prepared by dual target direct current (DC) magnetron sputtering at room temperature in a pure Ar atmosphere for transparent electrodes in IGZO-based TFTs. Electrical, optical, structural and surface properties of Ga and Zn co-doped In2O3 (IGZO) electrodes were investigated as a function of IGO and IZO target DC power during the co-sputtering process. Unlike semiconducting InGaZnO4 films, which were widely used as a channel layer in the oxide TFTs, the co-sputtered IGZO films showed a high transmittance (91.84%) and low resistivity (4.1 × 10− 4 Ω cm) at optimized DC power of the IGO and IZO targets, due to low atomic percent of Ga and Zn elements. Furthermore, the IGO co-sputtered IZO films showed a very smooth and featureless surface and an amorphous structure regardless of the IGO and IZO DC power due to the room temperature sputtering process. This indicates that co-sputtered IGZO films are a promising S/D electrode in the IGZO-based TFTs due to their low resistivity, high transmittance and same elements with channel InGaZnO4 layer.  相似文献   

11.
Y.S. Kim  J.T. Lim  G.Y. Yeom 《Thin solid films》2009,517(14):4065-3864
SiO2-like thin films were deposited at a low temperature (< 50 °C) by a remote-type, atmospheric pressure plasma enhanced chemical vapor deposition (AP-PECVD) using a pin-to-plate-type, dielectric barrier discharge with gas mixtures containing hexamethyldisilazane (HMDS)/O2/He/Ar. The film characteristics were investigated according to the HMDS and O2 flow rates. To obtain a more SiO2-like thin film, an adequate combination of HMDS and oxygen flow rates was required to remove the -(CH3)x bonding in the HMDS and to oxidize the Si in HMDS effectively. At the optimized flow rates, the surface roughness of the SiO2-like thin film was also the lowest. By using HMDS (50 sccm) and O2 (500 sccm) flow rates in the gas mixture of HMDS/O2/He (2 slm)/Ar (600 sccm), SiO2-like thin films with a low impurity (< 6.35% C) were obtained at a deposition rate of approximately 10.7 nm/min.  相似文献   

12.
Xue-Yang 《Thin solid films》2010,518(22):6441-6445
In this study, the etching characteristics of ALD deposited Al2O3 thin film in a BCl3/N2 plasma were investigated. The experiments were performed by comparing the etch rates and the selectivity of Al2O3 over SiO2 as functions of the input plasma parameters, such as the gas mixing ratio, the DC-bias voltage, the RF power, and the process pressure. The maximum etch rate was obtained at 155.8 nm/min under a 15 mTorr process pressure, 700 W of RF power, and a BCl3 (6 sccm)/N2 (14 sccm) plasma. The highest etch selectivity was 1.9. We used X-ray photoelectron spectroscopy (XPS) to investigate the chemical reactions on the etched surface. Auger electron spectroscopy (AES) was used for the elemental analysis of the etched surfaces.  相似文献   

13.
Masato Miyake 《Thin solid films》2007,515(9):4258-4261
Characteristics of nano-crystalline diamond (NCD) thin films prepared with microwave plasma chemical vapor deposition (CVD) were studied in Ar/H2/CH4 gas mixture with a CH4 gas ratio of 1-10% and H2 gas ratio of 0-15%. From the Raman measurements, a pair of peaks at 1140 cm− 1 and 1473 cm− 1 related to the trans-polyacetylene components peculiar to nano-crystalline diamond films was clearly observed when the H2 gas ratio of 5% was added in Ar/H2/CH4 mixture. With an increase of H2 gas content up to 15%, their peaks decreased, while a G-peak at roughly 1556 cm− 1 significantly increased. The degradation of NCD film quality strongly correlates with the decrease of C2 optical emission intensity with the increase of hydrogen gas contents. From the surface analysis with atomic force microscopy (AFM), it was found that grain sizes of NCD films were typically of 10-100 nm in case of 5% H2 gas addition.  相似文献   

14.
In this study, we monitored the HfAlO3 etch rate and selectivity to SiO2 as a function of the etch parameters (gas mixing ratio, RF power, DC-bias voltage, and process pressure). A maximum etch rate of 52.6 nm/min was achieved in the 30% BCl3/(BCl3 + Ar) plasma. The etch selectivity of HfAlO3 to SiO2 reached 1.4. As the RF power and the DC-bias voltage increased, the etch rate of the HfAlO3 thin film increased. As the process pressure decreased, the etch rate of the HfAlO3 thin films increased. The chemical state of the etched surfaces was investigated by X-ray Photoelectron Spectroscopy (XPS). According to the results, the etching of HfAlO3 thin films follows the ion-assisted chemical etching mechanism.  相似文献   

15.
We have fabricated a novel image sensor using Cu(In,Ga)Se2 (CIGS). A combined process of dry etching using HBr and Ar gasses and wet etching using dilute HCl solution was developed as isolation process of CIGS photodiode deposited at 400 °C. Etchant residues of the dry etching, which consist of Cu complex, were almost completely cleaned using the wet etching process and favorable vertical side wall of CIGS films was obtained without mechanical damages. As a result, high performance image sensors with low leakage current of ~ 10− 8 A/cm2 and wide wavelength range up to ~ 1240 nm were achieved. The developed image sensor consisted of 352 × 288 pixels with 10 µm × 10 µm pixel sizes, was able to capture clear images of night scenes.  相似文献   

16.
We have investigated the preparation of β-FeSi2 substrate and growth condition of β-FeSi2 thin film on β-FeSi2 (110) substrate by molecular beam epitaxy. The surface of the substrate was prepared by a wet-etching using HF(50%):HNO3(60%):H2O = 1:1:5 solution at 25 °C. It is clear that the optimal etching period to obtain a flat surface was 3 min. The β-FeSi2 thin film with streak RHEED pattern was obtained at Si/Fe flux ratio of 2.9. Average surface roughness (Ra) of the β-FeSi2 film was about 0.5 nm in 5 × 5 μm2 area.  相似文献   

17.
A new technique to produce microscale Ti3O5 nano- and microfiber meshes is proposed. When a 3 wt% carbon-doped TiO2 film on Si(1 0 0) was annealed at 1000 °C in wet nitrogen (0.8%H2O), the amorphous TiO2 phase gave rise to crystalline phases of λ-Ti3O5 (75%) and rutile + trace of TiO2−xCx (25%). From Raman and FTIR Spectroscopy results, it was concluded that rutile is formed at the inner layer located at the interface between the mesh and the Si that was located away from the surface such that the meshes of nano- and microfibers are predominantly composed of Ti3O5 grown from the reaction of rutile with Si to form Ti3O5 and SiO2. On the other hand, it was noteworthy that the microscale mesh of nano- and microfibers showed increased photoluminescence compared with amorphous TiO2. The PL spectrum which had a broad band in the visible spectrum, fitted as three broad Gaussian distributions centered at 571.6 nm (∼2.2 eV), 623.0 nm (∼2.0 eV) and 661.9 nm (∼1.9 eV).  相似文献   

18.
A.M Efremov 《Vacuum》2004,75(4):321-329
The effect of the CF4/Ar mixing ratio on the etching behaviour and mechanisms for Pb(Zr,Ti)O3 (PZT) thin films in an inductively coupled plasma was carried out. It was found that an increase of Ar mixing ratio causes non-monotonic behaviour of the PZT etch rate, which reaches a maximum of 2.38 nm/s at 80% Ar. Investigating the plasma parameters, we found a weak sensitivity of both electron temperature and electron density to the change of CF4/Ar mixing ratio. A combination of zero-dimensional plasma model with the model of surface kinetics shows the possibility of a non-monotonic etch rate behaviour due to the concurrence of physical and chemical pathways in the ion-assisted chemical reaction.  相似文献   

19.
D.Y. Ku  I. Lee  T.S. Lee  B. Cheong  W.M. Kim 《Thin solid films》2006,515(4):1364-1369
In this study, indium-zinc oxide (IZO) thin films have been prepared at a room temperature, 200 and 300 °C by radio frequency magnetron sputtering from a In2O3-12 wt.% ZnO sintered ceramic target, and their dependence of electrical and structural properties on the oxygen content in sputter gas, the substrate temperature and the post-heat treatment was investigated. X-ray diffraction measurements showed that amorphous IZO films were formed at room temperature (RT) regardless of oxygen content in sputter gas, and micro-crystalline and In2O3-oriented crystalline films were obtained at 200 and 300 °C, respectively. From the analysis on the electrical and the structural properties of annealed IZO films under Ar atmosphere at 200, 300, 400 and 500 °C, it was shown that oxygen content in sputter gas is a critical parameter that determines the local structure of amorphous IZO film, stability of amorphous phase as well as its eventual crystalline structure, which again decide the electrical properties of the IZO films. As-prepared amorphous IZO film deposited at RT gave specific resistivity as low as 4.48 × 10− 4 Ω cm, and the highest mobility value amounting to 47 cm2/V s was obtained from amorphous IZO film which was deposited in 0.5% oxygen content in sputter gas and subsequently annealed at 400 °C in Ar atmosphere.  相似文献   

20.
Intensity of the (2 0 0) peak in the X-ray diffraction pattern of the MgO film increases as N2 is added to Ar gas during MgO deposition. The optimum flow rate ratio of N2 to Ar in order to obtain maximum intensity of the MgO (2 0 0) peak is 2:5. As introducing N2 gas, no residual nitrogen atoms are found in the MgO films, which are confirmed by AES and ESCA analysis. On the other hand, the TEM dark field image shows that the average grain size of MgO film increases with increasing the flow rate ratio of N2 to Ar. This is due to that the deposition rate of MgO film is decreased with increasing the flow rate ratio of N2 to Ar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号