首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effect of thickness of ZnO active layer on ZnO-TFT's characteristics   总被引:1,自引:0,他引:1  
J.H. Chung  H.S. Kim  N.W. Jang 《Thin solid films》2008,516(16):5597-5601
We have investigated the electrical characteristics of ZnO thin film transistors with respect to the thickness of ZnO active layers. The ZnO layers with the thickness of 30 nm to 150 nm were deposited on bottom gate patterned Si substrate by RF sputtering at room temperature. The low-temperature oxide served as gate dielectric. As ZnO channel layer got thicker, the leakage current at VDS = 30 V and VG = 0 V greatly increased from 10− 10 A to 10− 6 A, while the threshold voltage decreased from 15 V to 10 V. On the other hand, the field effect mobility got around 0.15 cm2/V s except for the 30-nm-thick channel. Overall, the 55-nm-thick ZnO channel layer showed the best performance.  相似文献   

2.
Highly conducting AZO/Cu/AZO tri-layer films were successfully deposited on glass substrates by RF magnetron sputtering of Al-doped ZnO (AZO) and ion-beam sputtering of Cu at room temperature. The microstructures of the AZO/Cu/AZO multilayer films were studied using X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and atomic force microscope (AFM). X-Ray diffraction measurements indicate that the AZO layers in the tri-layer films are polycrystalline with the ZnO hexagonal structure and have a preferred orientation with the c-axis perpendicular to the substrates. With the increase of Cu thickness, the crystallinity of AZO and Cu layers is simultaneously improved. When the Cu thickness increases from 3 to 13 nm, the resistivity decreases initially and then varies little, and the average transmittance shows a first increase and then decreases. The maximum figure of merit achieved is 1.94 × 10−2 Ω−1 for a Cu thickness of 8 nm with a resistivity of 7.92 × 10−5 Ω cm and an average transmittance of 84%.  相似文献   

3.
Transparent conducting oxides thin layers, due to their optical and electrical properties, can be used as transparent electrodes in various optoelectronic devices. We present a metal-semiconductor-metal photodiode (MSM-PD) on silicon as optically active layer with zinc oxide (ZnO) thin layer as interdigitated Schottky transparent electrodes. The advantage of using a ZnO thin layer as Schottky electrodes consists in the improvement of the photoresponse by eliminating the shadowing of the active area by opaque metallic electrodes. ZnO thin layers were deposited on 10 Ω cm resistivity silicon epitaxial wafers by the vacuum thermal evaporation method. High purity metallic powders were mixed with an (Al + Sn)/Zn ratio of 0.03. In order to obtain transparent layers the metallic depositions were thermally treated at 450 °C for 2 h. The Al, Sn co-doped ZnO layers of 0.5-0.8 μm were investigated regarding structural, optical and electrical properties and surface morphology. The obtained thin layers have a high transparency (T > 85%) over a large spectral range and the resistivity is quite low, ρ ~ 10− 4 Ω cm. The interdigitated Schottky contacts of ZnO were configurated onto the optically active Si layer providing an MSM-PD structure of 0.143 mm2 active area and finger spacing and finger width of 6 μm. The optoelectronic characteristics were measured and the Schottky barrier height of 0.62 eV was determined from the current-voltage characteristic. A responsivity of 0.2 A/W at 475 nm and a capacitance of 1.4 pF at 10 V bias were obtained for the MSM-PD structure with transparent conducting ZnO Schottky electrodes.  相似文献   

4.
Compared to zinc oxide grown (ZnO) on flat glass, rough etched glass substrates decrease the sheet resistance (Rsq) of zinc oxide layers grown on it. We explain this Rsq reduction from a higher thickness and an improved electron mobility for ZnO layers deposited on rough etched glass substrates. When using this etched glass substrate, we also obtain a large variety of surface texture by changing the thickness of the ZnO layer grown on it. This new combination of etched glass and ZnO layer shows improved light trapping potential compared to ZnO films grown on flat glass. With this new approach, Micromorph thin film silicon tandem solar cells with high total current densities (sum of the top and bottom cell current density) of up to 26.8 mA cm− 2 were fabricated.  相似文献   

5.
The properties of ZnO/MgZnO heterostructures grown by pulsed-laser deposition on sapphire (112?0) and ZnO (0001?) have been compared. Electron accumulation layers have been observed for ZnO/MgZnO heterostructures grown on sapphire by capacitance-voltage (C-V) spectroscopy. The formation of a two-dimensional electron gas (2DEG) in these structures has been confirmed by temperature dependent Hall effect measurements. From C-V measurements the sheet carrier density in a Zn0.8 Mg0.2O/ZnO/Zn0.8 Mg0.2O quantum well (QW) structure with a well width of about 5 nm is calculated to be only about 9.0 × 1010 cm− 2. For the films deposited on sapphire 2D growth is observed in the Burton-Cabrera-Frank mode, as confirmed by atomic force microscopy. Step flow growth mode was achieved for the homoepitaxial thin films. Quantum confinement effects have been confirmed by photoluminescence (PL) measurements. Homoepitaxial QWs are more homogeneous (smaller inhomogeneous recombination broadening) than heteroepitaxial QWs.  相似文献   

6.
We describe a simple route to flower like ZnO architectures, based on the decomposition of zinc acetate precursor in water-ethylene glycol solution at 140-160 °C for 1d through hydrothermal method. The PXRD pattern reveals that the ZnO crystals are of hexagonal wurtzite structure. Ethylene glycol plays a key role on the morphology control of ZnO crystals. The SEM images of ZnO products prepared at 140 °C and 160 °C mainly exhibit flower like architecture composed of many rods. Whereas, the product prepared at 180 °C shows bunches accompanying a few number of free rods. TEM results reveal that the rods resemble swords with decrease in size from one end to another. From Raman spectrum, the peaks at 437 cm− 1, 382 cm− 1 and 411 cm− 1 correspond to E2 (high), A1 (TO) and E1 (TO) of ZnO crystals respectively. The photoluminescence spectrum exhibits strong UV emission at ~ 397 nm, which comes from recombination of exciton. The possible mechanism for the formation of flower like ZnO architecture is proposed.  相似文献   

7.
Thin films of polypyrrole (PPY) were prepared by Matrix-Assisted Pulsed Laser Evaporation (MAPLE) technology from two matrices: water and dimethylsulfoxide (DMSO). The deposition was carried out using a KrF excimer laser (laser fluence F ranged from 0.1 to 0.6 J cm− 2). This work deals with optimization of two deposition parameters - laser fluence and number of pulses - for both matrices. From the deposition curves, the fluence thresholds, Fth, and maximum growth rates were subsequently determined (water matrix: Fth ~ 0.40-0.45 J cm− 2, maximum growth rate 0.16 nm pulse− 1; DMSO matrix: Fth ~ 0.25-0.30 J cm− 2; maximum growth rate 0.20 nm pulse− 1). The changes in chemical composition of deposited layers were studied by Attenuated Total Reflection Fourier Transform Infrared spectroscopy. Surface morphology was characterized by Atomic Force Microscopy. A discussion is also presented concerning relationships between laser fluence and chemical composition of deposited layers with respect to their potential application in gas sensors. Finally, the response of a sensor with a MAPLE deposited PPY active layer to air humidity is presented.  相似文献   

8.
The structural, optical and electrical properties of ZnO thin films (260 - 490 nm thick) deposited by direct-current sputtering technique, at a relatively low-substrate temperature (363 K), onto polyethylene terephthalate and glass substrates have been investigated. X-ray diffraction patterns confirm the proper phase formation of the material. Optical transmittance data show high transparency (80% to more than 98%) of the films in the visible portion of solar radiation. Slight variation in the transparency of the films is observed with a variation in the deposition time. Electrical characterizations show the room-temperature conductivity of the films deposited onto polyethylene terephthalate substrates for 4 and 5 h around 0.05 and 0.25 S cm− 1, respectively. On the other hand, for the films deposited on glass substrates, these values are 8.5 and 9.6 S cm− 1 for similar variation in the deposition time. Room-temperature conductivity of the ZnO films deposited on glass substrates is at least two orders of magnitude higher than that of ZnO films deposited onto polyethylene terephthalate substrates under identical conditions. Hall-measurements show the maximum carrier concentration of the films on PET and glass substrate around 2.8 × 1016 and 3.1 × 1020 cm− 3, respectively. This report will provide newer applications of ZnO thin films in flexible display technology.  相似文献   

9.
In this paper, we study the localized deposition of ZnO micro and nanostructures deposited by non-reactive rf-magnetron sputtering through a stencil mask on ultra-thin (10 nm) SiO2 layers containing a single plane of silicon nanocrystals (NCs), synthetized by ultra-low energy ion implantation followed by thermal annealing. The localized ZnO-deposited areas are reproducing the exact stencil mask patterns. A resistivity of around 5 × 10− 3 Ω cm is measured on ZnO layer. The as-deposited ZnO material is 97% transparent above the wavelength at 400 nm. ZnO nanostructures can thus be used as transparent electrodes for Si NCs embedded in the gate-oxide of MOS devices.  相似文献   

10.
Silicon nitride thin films for use as passivation layers in solar cells and organic electronics or as gate dielectrics in thin-film transistors were deposited by the Hot-wire chemical vapor deposition technique at a high deposition rate (1-3 ?/s) and at low substrate temperature. Films were deposited using NH3/SiH4 flow rate ratios between 1 and 70 and substrate temperatures of 100 °C and 250 °C. For NH3/SiH4 ratios between 40 and 70, highly transparent (T ~ 90%), dense films (2.56-2.74 g/cm3) with good dielectric properties and refractive index between 1.93 and 2.08 were deposited on glass substrates. Etch rates in BHF of 2.7 ?/s and < 0.5 ?/s were obtained for films deposited at 100 °C and 250 °C, respectively. Films deposited at both substrate temperatures showed electrical conductivity ~ 10− 14 Ω− 1 cm− 1 and breakdown fields > 10 MV cm− 1.  相似文献   

11.
Transparent oxide semiconductors (TOSs) are promising materials for a variety of optoelectronic applications such as UV detectors. While several TOS-based p-n and p-i-n diodes have been recently reported, the high reverse dark current still poses a major issue. In this work, we report on a NiO/ZnO/ITO p-i-n heterostructure with reduced dark current level suitable for practical applications. Ion beam-assisted e-beam evaporation was used to deposit both p-type NiO and intrinsic ZnO layers, while a conventional sputtering system was used to prepare the ITO layer. Samples with sputtered ZnO layer were also fabricated for comparison. The diodes demonstrated clear rectifying I-V characteristics with a current rectification ratio up to 104 at bias voltages of ± 1 V. The lowest level of reverse dark current (∼ 10 nA/cm2 at − 5 V) is observed in samples with ZnO deposited by ion beam-assisted e-beam evaporation. In comparison, diodes with sputtered ZnO layer show two orders of magnitude higher dark current. Analysis of the quasi-static J-V characteristics, including time dependence behavior, shows that the dark current can be attributed to thermal generation of charge carriers via deep defects states in the ZnO layer and charge injection from the contacts. Electrical and optical properties of the TOS films are presented and discussed along with deposition conditions and device performance.  相似文献   

12.
Nanocrystalline PbS layers have been deposited chemically on Si, Ge and GaAs substrates from alkaline solutions containing 0.05 mol l 1 of Pb(NO3)2, 0.04 mol l 1 of thiourea, 0.05 mol l 1 of triethanolamine, and 0.15 mol l 1 of NaOH. Rutherford backscattering spectroscopy, transmission electron and atomic force microscopy reveal that the chemical nature of the substrate has a profound influence on the structure and thickness of the deposited layers. It is found that a large lattice mismatch between the substrate and PbS results in formation of coarse-grained layers with a small effective thickness (e.g. PbS on Si). On the other hand, close matching of lattice constants leads to deposition of thicker layers with smaller grain size (e.g. PbS on Ge, GaAs).  相似文献   

13.
ZnO nanowires (NWs) have been successfully synthesized using a hydrothermal technique on both glass and silicon substrates initially coated with a sputtered ZnO thin film layer. Varying ZnO seed layer thicknesses were deposited to determine the effect of seed layer thickness on the quality of ZnO NW growth. The effect of growth time on the formation of ZnO NWs was also studied. Experimental results show that these two parameters have an important effect on formation, homogeneity and vertical orientation of ZnO NWs. Silicon nanowires were synthesized by a Ag-assisted electroless etching technique on an n-type Si (100) wafer. SEM observations have revealed the formation of vertically-aligned Si NWs with etching depth of ∼700 nm distributed over the surface of the Si. An electron-beam evaporated chalcopyrite thin film consisting of p-type AgGa0.5In0.5Se2 with ∼800 nm thickness was deposited on the n-type ZnO and Si NWs for the construction of nanowire based heterojunction solar cells. For the Si NW based solar cell, from a partially illuminated area of the solar cell, the open-circuit voltage, short-circuit current density, fill factor and power conversion efficiency were 0.34 V, 25.38 mA cm−2, 63% and 5.50%, respectively. On the other hand, these respective parameters were 0.26 V, 3.18 mA cm−2, 35% and 0.37% for the ZnO NW solar cell.  相似文献   

14.
Room temperature ferromagnetism (RTFM) was observed in both La-doped and pure ZnO nanoparticles synthesized by the sol–gel method. RTFM is intrinsic according to the results of X-ray diffraction and X-ray photoelectron spectroscopy. The saturation magnetization (MS), the remnant magnetization at zero field and coercive field are 5 × 10−3, 7 × 10−4 emu g−1, 100 Oe for Zn0.99La0.01O nanoparticles and 1.5 × 10−4, 1 × 10−5 emu g−1, 50 Oe for pure ZnO nanoparticles, respectively. The magnetization is enhanced greatly by doping of La. Furthermore, the MS of Zn0.99La0.01O nanoparticles decreases from 0.005 to 0.001 emu g−1 as the annealing temperature increases from 500 to 700 °C. The doping of La introduces more oxygen vacancies into ZnO. The decrease of annealing temperature also produces more oxygen vacancies in La-doped ZnO. These results indicate that the origin of the RTFM is related to oxygen vacancies.  相似文献   

15.
Highly doped indium-tin oxide films exhibit resistivities ρ as low as  1.2 × 10− 4 Ω cm, while for ZnO films resistivities in the range of 2 to 4 × 10− 4 Ω cm are reported. This difference is unexpected, if ionized impurity scattering would be dominant for carrier concentrations above 1020 cm− 3. By comparing the dependences of the effective Hall mobility on the carrier concentration of ZnO and ITO it is found that grain barriers limit the carrier mobility in ZnO for carrier concentrations as high as 2 × 1020 cm− 3, independently, if the films were grown on amorphous or single crystalline substrates. Depending on the deposition method, grain barrier trap densities between 1012 and 3 × 1013 cm− 2 were estimated for ZnO layers. Also, crystallographic defects seem to reduce the mobility for highly doped ZnO films. On the other hand, for ITO films such an influence of the grain barriers was not observed down to carrier concentrations of about 1018 cm− 3. Thus the grain barrier trap densities of ZnO and ITO are significantly different, which seems to be connected with the defect chemistry of the two oxides and especially with the piezoelectricity of zinc oxide.  相似文献   

16.
S.H. Jeong 《Thin solid films》2008,516(16):5586-5589
Zinc oxide (ZnO) is an excellent piezoelectric material with simple composition. ZnO film is applied to the piezoelectric devices because it has high resistivity and highly oriented direction at c-axis. Structural and electrical properties in ZnO films are influenced by deposition conditions. Lithium-doped ZnO (LZO) films were deposited by RF magnetron sputtering method using Li-doped ZnO ceramic target with various ratios (0 to 10 wt.% LiCl dopant). LZO films revealed high resistivity of above 107 Ω cm with smooth surface when they were deposited with 4% LiCl-doped ZnO target under room temperature. However, their c-axis orientation was worse than the c-axis orientation of pure ZnO films. We have also studied on structural, optical and electrical properties of the ZnO films by XRD, AFM, SEM, XPS, and 4-point probe analyses. We concluded that LZO films were deposited with 4 wt.% LiCl-doped ZnO target and were apposite for piezoelectrical application.  相似文献   

17.
High mobility p-type ZnO:AlN thin films have been efficiently realized by utilizing pre-activated nitrogen (N) plasma sources with an inductively coupled dual target co-sputtering system. High density of N-plasma-radicals was generated with an additional RF power applied through a ring-shaped quartz-tube located inside the chamber during co-sputtering process. The AlN codoped ZnO film shows excellent p-type behavior with a high mobility and a hole concentration of 154 cmV− 1s− 1 and about 3 × 1018°cm− 3 at 600 °C, respectively. Electrical properties of p-n homo-junction devices based on p-type ZnO film are also discussed.  相似文献   

18.
The mechanism of nitrogen doping is essential for making p-type ZnO. This paper demonstrates that Raman characterization is a potentially powerful tool to study the mechanism of nitrogen doping. We have observed new Raman features near 280, 510, 570, 642, 773, 1360 and 1565 cm− 1 shift in nitrogen doped ZnO (ZnO:N) thin films compared with undoped ZnO films. Peaks at 280, 510, 570, 642, and 773 cm− 1 are attributed to the nitrogen related defect complex. The Raman peaks at 1360 cm− 1 and 1565 cm− 1 shift are assigned to D—(disordered) and G—(Graphitic) bands associated with the carbon-related defect complex, respectively. The intensity and the intensity ratio of peaks at 1360 cm− 1 and 1565 cm− 1 have been found to be sensitive parameters that reflect the conductivity type of ZnO:N. Explanations are presented which correlate the Raman features to the electric conductivity of the films. From this analysis, we found that at temperature lower than or at 400 °C, nitrogen incorporation will form the nitrogen or possible nitrogen carbon related defect complex. As the growth temperature increases to 500 °C, the features associated with nitrogen are difficult to distinguish and the features associated to carbon begin to emerge. This observation possibly indicates the decrease of the nitrogen content and the increase of the carbon content in the ZnO:N film. The increase of carbon content may affect the donor behavior of the film. This observation suggests that growth conditions should be controlled to avoid carbon into the film.  相似文献   

19.
Highly conducting and transparent thin films of tungsten-doped ZnO (ZnO:W) were prepared on glass substrates by direct current (DC) magnetron sputtering at low temperature. The effect of film thickness on the structural, electrical and optical properties of ZnO:W films was investigated. All the deposited films are polycrystalline with a hexagonal structure and have a preferred orientation along the c-axis perpendicular to the substrate. The electrical resistivity first decreases with film thickness, and then increases with further increase in film thickness. The lowest resistivity achieved was 6.97 × 10−4 Ω cm for a thickness of 332 nm with a Hall mobility of 6.7 cm2 V−1 s−1 and a carrier concentration of 1.35 × 1021 cm−3. However, the average transmittance of the films does not change much with an increase in film thickness, and all the deposited films show a high transmittance of approximately 90% in the visible range.  相似文献   

20.
A custom-designed inductively coupled plasma assisted radio-frequency magnetron sputtering deposition system has been used to fabricate N-doped p-type ZnO (ZnO:N) thin films on glass substrates from a sintered ZnO target in a reactive Ar + N2 gas mixture. X-ray diffraction and scanning electron microscopy analyses show that the ZnO:N films feature a hexagonal crystal structure with a preferential (002) crystallographic orientation and grow as vertical columnar structures. Hall effect and X-ray photoelectron spectroscopy analyses show that N-doped ZnO thin films are p-type with a hole concentration of 3.32 × 1018 cm− 3 and mobility of 1.31 cm2 V− 1 s− 1. The current-voltage measurement of the two-layer structured ZnO p-n homojunction clearly reveals the rectifying ability of the p-n junction. The achievement of p-type ZnO:N thin films is attributed to the high dissociation ability of the high-density inductively coupled plasma source and effective plasma-surface interactions during the growth process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号