首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
OLED manufacturing for large area lighting applications   总被引:3,自引:0,他引:3  
M. Eritt  C. May  M. Toerker 《Thin solid films》2010,518(11):3042-3045
We present first results of a new developed large area manufacturing system for organic light-emitting diodes (OLED) dedicated to lighting and signage applications. The system combines high throughput with flexibility in production at highly-precise deposition conditions. After introducing the system with its modules, first results for organic and metal layer deposition properties are shown. Next orange/red p-i-n type OLED samples are prepared on large ITO substrates and the characterization by luminance and current measurements are presented. The devices achieve very high efficiencies up to 31 cd/A on large area substrates which are comparable to devices on smaller substrates.  相似文献   

2.
A major advantage of polymer based organic light emitting diodes (OLED) is the capability to be manufacturing them with low cost, high-throughput printing techniques. In this paper, we report on double layer gravure printed polymer based OLED light sources with an active area of 0.16 cm2 on glass substrate. The devices exhibit brightness of 100 cd/m2 and 1000 cd/m2 at 4.2 V and 5.4 V, respectively. Furthermore, a large area OLED of 30 cm2 in which both polymer layers are gravure printed is demonstrated for lighting applications. Based on the results presented in this paper, the feasibility of the gravure printing technique for the fabrication of large area OLEDs in large-scale production is proved.  相似文献   

3.
The electrical and optical properties of the NiO films deposited under various conditions were first characterized. An ultra-thin layer of nickel oxide (NiO) was then deposited on the indium-tin oxide (ITO) anode to enhance the hole injection in the organic light-emitting diode (OLED) devices. A very low turn-on voltage (3 V) was actually observed for the device with the ITO/NiO anode in the conventional double layer heterojunction OLEDs. The enhancement of hole injection by the ITO/NiO anode was further verified by the hole-only device and by the device with a patterned NiO layer on the ITO anode. The luminance and the current density of the single-layer OLED device were also significantly improved by using the ITO/NiO anode to enhance the hole injection. Although the luminescence efficiency was low, the reasons of low efficiency were studied and the improvement method was proposed. Our results suggest that the NiO/ITO anode is an excellent choice to enhance the hole injection in OLED devices.  相似文献   

4.
White organic light emitting diode (OLED) devices with the structure ITO/PHF:rubrene/Al, in which PHF (poly(9,9-di-n-hexylfluorenyl-2,7-diyl)) is used as blue light emitting host and rubrene (5,6,11,12-tetraphenylnapthacene) as an orange dye dopant, have been fabricated. Indium tin oxide (ITO) coated-glass and aluminium were used as anode and cathode, respectively. The devices were fabricated with various rubrene-dopant to obtain a white light emission. The OLED device that composed of several concentrations of rubrene-doped PHF film was prepared in this study. It was found that the concentration of rubrene in the PHF-rubrene thin film matrix plays a key role in producing the white color emission. In a typical result, the device composed of 0.06 wt.% rubrene-dopant produced the white light emission with the Commission Internationale de L'Eclairage (CIE) coordinate of (0.30,0.33). The turn-on voltage and the brightness were found to be as low as 14.0 V and as high as 6540 cd/m2, respectively. The annealing technique at relatively low temperature (50 °C, 100 °C, and 150 °C) was then used to optimize the performance of the device. In a typical result, the turn-on voltage of the device could be successfully reduced and the brightness could be increased using the annealing technique. At an optimum condition, for example, annealed at 150 °C, the turn-on voltage as low as 8.0 V and the brightness as high as 9040 cd/m2 were obtained. The mechanism for the improvement of the device performance upon annealing will be discussed.  相似文献   

5.
The preparation and characteristics of indium tin oxide (ITO) electrodes grown using a specially designed linear facing target sputtering (LFTS) system with a ladder type magnet arrangement for organic light emitting diodes (OLED) are described. It was found that the electrical and optical properties of the ITO electrode were critically dependent on the Ar/O2 flow ratio, while its structural and surface properties remained fairly constant regardless of the Ar/O2 flow ratio, due to the low substrate temperature during the plasma damage-free sputtering. Under the optimized conditions, we obtained an ITO electrode with the lowest sheet resistance of 39.4 Ω/sq and high transmittance of 90.1% (550 nm wavelength) at room temperature. This suggests that LFTS is a promising low temperature and plasma damage free sputtering technology for preparing high-quality ITO electrodes for OLEDs and flexible OLEDs at room temperature.  相似文献   

6.
Tris (1,10 phenanthroline) iron (II) or Fe (Phen)2+ 3, a metal-to-ligand charge transfer (MLCT) type complex (TPFe), was employed in the form of thin films, for the fabrication of Schottky diodes, Al/ TPFe/ITO, where ITO is indium tin oxide. The effect of iodine doping on the electrical behaviour has been emphasized. The diodes exhibit a rectification effect which improves on iodine doping. The diodes can be classified as MIS Schottky diodes with a graded dopant profile. The current-voltage (J-V ), and capacitance-voltage (C-V ) characteristics, the photoaction spectra of the devices and the absorption spectra of the complex, reveal that both doped and undoped complexes behave as a p-type organic semiconductor which form a Schottky barrier with Al and an ohmic contact with ITO. Various electrical and photovoltaic parameters were determined from the detailed analysis of J-V and C-V characteristics and these are discussed in detail. The effect of I_2 doping on the rectification and photovoltaic properties is also discussed.  相似文献   

7.
Indium tin oxide (ITO) films are widely used for a transparent electrode of organic light emitting devices (OLEDs) because of its excellent conductivity and transparency. Two types of ITO substrates with different surface roughness were selected to use as anode of OLEDs. In addition, two types of etching process of ITO substrate, particularly the etching time, were also carried out. It was found that the surface roughness and/or the etching process of ITO substrate strongly influenced on an edge of ITO surface, further affected the operating characteristics and reliability of devices.  相似文献   

8.
In this study, the work function, transmittance, and resistivity of indium tin oxide (ITO) thin films were successfully modified by depositing an Al capping layer on top of ITO with subsequent thermal annealing. The 5 nm thick Al layer was deposited by a conventional dc magnetron sputtering method and the layer was converted into an aluminum oxinitride by subjecting the sample to rapid thermal annealing (RTA) under a nitrogen atmosphere. The films exhibited a high transmittance of 86% on average within the visible wavelength region with an average resistivity value of 7.9 × 10− 4 Ω cm. Heat-treating the Al/ITO films via RTA resulted in the decrease of the optical band gap from that of bare ITO. In addition, the films showed red-shift phenomena due to their decreased band gaps when the heat-treatment temperature was increased. The resultant electrical and optical characteristics can be explained by the formation of aluminum oxinitride on the surface of the ITO films. The work function of the heat-treated films increased by up to 0.26 eV from that of a bare ITO film. The increase of the work function predicts the reduction of the hole-injection barrier in organic light-emitting diode (OLED) devices and the eventual use of these films could provide much improved efficiency of devices.  相似文献   

9.
Transparent and conductive indium tin oxide (ITO) thin films were deposited onto polyethylene terephthalate (PET) by d.c. magnetron sputtering as the front and back electrical contact for applications in flexible displays and optoelectronic devices. In addition, ITO powder was used for sputter target in order to reduce the cost and time of the film formation processes. As the sputtering power and pressure increased, the electrical conductivity of ITO films decreased. The films were increasingly dark gray colored as the sputtering power increased, resulting in the loss of transmittance of the films. When the pressure during deposition was higher, however, the optical transmittance improved at visible region of light. ITO films deposited onto PET have shown similar optical transmittance and electrical resistivity, in comparison with films onto glass substrate. High quality films with resistivity as low as 2.5 × 10− 3 Ω cm and transmittance over 80% have been obtained on to PET substrate by suitably controlling the deposition parameters.  相似文献   

10.
We report on transparent conductive indium tin oxide (In2O3:Sn; ITO) nanoparticle films processed at a low temperature of 130 °C for the application in lighting devices using spin coating and doctor blading techniques. Major emphasis is put on the beneficial application of the particular transparent electrode material for the fabrication of patterned large area electroluminescence lamps. In order to improve film properties like adhesion and conductivity, hybrid nanoparticle-polymer blends out of ITO particles and organic film-forming agent polyvinylpyrrolidone (PVP) and the organofunctional coupling agent 3-methacryloxypropyltrimethoxysilane (MPTS) have been developed. The layers were cured by UV-irradiation, which was also used for lateral structuring of the transparent, conductive electrode. Additional low-temperature heat treatment (T = 130 °C) in air and forming gas improved the electronic properties. While pure ITO nanoparticulate layers processed at 130 °C exhibited conductance of up to 3.1 Ω− 1 cm− 1, the nanocomposite coatings showed a conductance of up to 9.8 Ω− 1 cm− 1. Corresponding layers with a sheet resistance of 750 Ω/□ were applied in electroluminescent lamps.  相似文献   

11.
Modifications of indium-tin-oxide (ITO) and copper phthalocyanine (CuPc) layers by heat treatment aimed at lowering driving voltage in organic light-emitting diodes (OLEDs) are examined. Significant changes were observed in the surface morphology and carrier injection properties of ITO and CuPc layers after annealing at T = 250 °C for 0-60 min in a glove box. In the case of ITO annealing, although the ITO work function gradually decreased and the surface of the ITO layer became smoother than that of an unannealed ITO layer, we observed an appreciable decrease in the driving voltage with an increase in annealing time. In the case of CuPc annealing, on the other hand, we observed deterioration of the OLED's characteristics. All devices demonstrated an increase in driving voltage due to the pronounced crystallization of the CuPc layer.  相似文献   

12.
ITO and ITO:Ce films were deposited by DC magnetron sputtering using an ITO (SnO2: 10 wt.%) target and CeO2 doped ITO (CeO2: 0.5, 3.0, 4.0 and 6.0 wt.%) ceramic targets, respectively, on unheated non-alkali glass substrates (corning E2000). The as-deposited films were annealed at 200 °C in an Ar atmosphere at a pressure of 1 Pa. The crystallization temperature of the ITO film was increased by introducing Ce atoms because they decrease the level of crystallinity. It was also confirmed that the etching rate, surface morphology and work function were improved by the addition of Ce atoms despite there being increased resistivity. The current voltage (I-V) characteristics of the OLED devices deteriorated with increasing Ce content in the ITO anode, which was attributed to a decrease in carrier density despite there being a high work function. Therefore, the carrier density is one of the most important factors that determine the turn-on voltage for OLED applications.  相似文献   

13.
Preparation and characterization of ceramic thin film thermocouples   总被引:3,自引:0,他引:3  
Indium tin oxide (ITO), alumina doped zinc oxide (ZnO) and NiCrCoAlY/alumina nanocomposites were systematically investigated as thermoelements. These ceramic thermoelements were initially tested relative to a platinum reference electrode and the resulting thermoelectric properties were evaluated. Bi-ceramic junctions comprised of the most stable and responsive ceramic thermoelements, i.e. those thermoelements with the largest and most stable Seebeck coefficients relative to platinum, were fabricated and tested. A bi-ceramic junction based on nitrogen-doped ITO:oxygen-doped ITO exhibited excellent high temperature stability and reproducibility, however, this thermocouple pair had a relatively low Seebeck coefficient (6 μV/°C). Alumina doped ZnO:ITO thermocouples generated a very large electromotive force at low temperatures but lacked high temperature stability. When nitrogen-doped ITO was combined with a NiCoCrAlY/alumina nanocomposite, a very large and stable Seebeck coefficient (375 μV/°C) was realized. Ceramic thermocouples based on several candidate materials were demonstrated at temperatures up to 1200 °C and the potential of using these materials in other thermoelectric devices including those for energy harvesting is discussed.  相似文献   

14.
有机小分子电致红色荧光材料的研究进展   总被引:1,自引:0,他引:1  
有机电致发光器件(OLEDs)具有效率高、驱动电压低、亮度高、响应速度快以及能实现大面积彩色显示等优点,是近年来发光显示领域的研究热点.在红绿蓝三基色电致荧光器件中,绿光器件的能量转换效率和器件寿命最高 ,而红光和蓝光器件的性能则较差,这直接影响了OLED的产业化进程.近年来,通过采用掺杂结构,使红色电致荧光器件的能量转换效率和器件的稳定性有了显著提高,可以达到10lm/W及106h,但是需要在较低的电流密度下获得,因此开发新型材料具有重要的意义.综述了近年来有机电致红色荧光材料领域的国内外研究进展.  相似文献   

15.
This study examined the anode material properties of Ga-doped zinc oxide (GZO) thin films deposited by pulsed DC magnetron sputtering along with the device performance of organic light emitting diodes (OLEDs) using GZO as the anode. The structure and electrical properties of the deposited films were examined as a function of the substrate temperature. The electrical properties of the GZO film deposited at 200 °C showed the best properties, such as a low resistivity, high mobility and high work function of 5.3 × 10− 4Ω cm, 9.9 cm2/Vs and 4.37 eV, respectively. The OLED characteristics with the GZO film deposited under the optimum conditions showed good brightness > 10,000 cd/m2. These results suggest that GZO films can be used as the anode in OLEDs, and a lower deposition temperature of 200 °C is suitable for flexible devices.  相似文献   

16.
Electronic trap densities at the indium tin oxide (ITO)/hole transport layer (HTL) interface in operating organic light-emitting diodes (OLEDs) are characterized in situ using impedance spectroscopy. For OLEDs with a high density of active trap states, negative values of the frequency derivative of resistance are clearly observable for frequencies on the order of 10 kHz, whereas positive values are observed when the trap density is low With this technique, it is revealed that the trap density is minimized via the introduction of a TPD-Si2 (4,4′-bis[(p-trichlorosilylpropylphenyl) phenylamino]-biphenyl) passivation layer at the ITO/HTL interface or by the application of large electric fields during device operation. Furthermore, impedance spectroscopy illustrates that the ITO/HTL interface is not a simple series resistance when traps are present since they are shown not to contribute to high frequency conduction. Overall, this paper demonstrates that the parasitic effects of interface traps can mask the underlying negative capacitive transport in OLEDs and presents a technique capable of monitoring the trap density of buried interfaces in organic electronic devices.  相似文献   

17.
We present excellent polymeric buffer materials based on the poly(9,9-dioctylfluorene-co-N, N-di(phenyl)-N,N-di(3-carboethoxyphenyl)benzidine) (BFE) for highly efficient solution processed organic light emitting diodes (OLEDs). Doped BFE with 3,5-dinitrobenzonitrile (35DNBN), a strong electron acceptor results in significant improvement of current flow and driving voltage. Maximum current- and power-efficiency value of 7.2 cd/A and 5.5 lm/W are demonstrated from blue OLEDs with these doped polymeric anode buffer system. The 40 nm thick anode buffer material showed a similar current density-voltage (J-V) behavior to that of PEDOT:PSS based device. Results reveal a practical way to fabricate the highly efficient solution processed devices for low cost production of printing devices for the future.  相似文献   

18.
Multilayer transparent electrode based on Al-doped zinc oxide (AZO)/Ag/Al-doped zinc oxide (AZO) was fabricated by sputtering, and a green organic light-emitting diode (OLED) device utilizing AZO/Ag/AZO as anode was fabricated. The AZO/Ag/AZO multilayer film exhibited superior square resistance and optical transmittance to those of commercial indium tin oxide (ITO). In comparison with the green OLEDs based on ITO and pure AZO anode, the green OLED based on AZO/Ag/AZO showed the highest light-emitting efficiency. The results indicate that AZO/Ag/AZO multilayer electrodes are a promising low-cost, low-toxic and low-temperature processing electrode scheme for OLED application.  相似文献   

19.
Low-cost flexible organic light-emitting diodes (OLEDs) with nanoemitter material from waste open up new opportunities for sustainable technology. The common emitter materials generated from waste are carbon dots (CDs). However, these have poor luminescent properties. Further solid-state emission quenching makes application in display devices challenging. Here, flexible and rigid OLED devices are demonstrated using self-assembled 2D arrays of CDs derived from waste material, viz., human hair. High-performance CDs with a quantum yield (QY) of 87%, self-assembled into 2D arrays, are achieved by improving the crystallinity and decreasing the CDs' size distribution. The CD island array exhibits ultrahigh hole mobility (≈10−1 cm2 V−1 s−1) and significant reduction in solid-state emission quenching compared to pristine CDs; hence, it is used here as an emitting layer in both indium tin oxide (ITO)-coated glass and ITO-coated flexible poly(ethylene terephthalate) (PET) substrate OLED devices, without any hole-injection layer. The flexible OLED device exhibits a stable, voltage-independent blue/cyan emission with a record maximum luminescence of 350 cd m−2, whereas the OLED device based on the rigid glass substrate shows a maximum luminescence of 700 cd m−2. This work sets up a platform to develop next-generation OLED displays using CD emitters derived from the biowaste material.  相似文献   

20.
《Thin solid films》2006,494(1-2):23-27
In this work, the fabrication and the characterization of a white triple-layer OLED using a β-diketones binuclear complex [Eu(btfa)3phenterpyTb(acac)3] as the emitting layer is reported. The devices were assembled using a heterojunction between three organic molecular materials: the N,N′-bis(naphthalen-1-yl)-N,N′-bis(phenyl)benzidine (NPB) as hole-transporting layer, the β-diketones binuclear complex and the tris(8-hydroxyquinoline aluminum) (Alq3) as the electron transporting layer. All the organic layers were sequentially deposited under high vacuum environment by thermal evaporation onto ITO substrates and without breaking vacuum. Continuous electroluminescence emission was obtained varying the applied bias voltage from 10 to 22 V showing a wide emission band from 400 to 700 nm with about 100 cd/m2 of luminance. The white emission results from a combined action between the binuclear complex, acting as hole blocking and emitting layer, blue from NPB and the typical Alq3 green emission. The intensity ratio of the peaks is determined by the layer thickness and by the bias voltage applied to the OLED, allowing us to obtain a color tunable light source.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号