共查询到20条相似文献,搜索用时 15 毫秒
1.
Cu粉及纳米Cu粉填充聚甲醛的摩擦学性能研究 总被引:19,自引:0,他引:19
利用RFT-Ⅲ往复摩擦磨损试验机测试了Cu粉(200目)及纳米Cu粉填充聚甲醛所形成复合材料的摩擦磨损性能,并利用电镜、XPS和AES研究了其磨损机理。研究发现,填加一定量Cu粉(200目)及纳米Cu粉均可降低聚甲醛的磨损,但填加纳米Cu粉效果更好,,XPS分析钢对偶面发现,Cu粉(200目)在摩擦过程中生成Cu2O,而纳米Cu粉在摩擦过程中生成Cu(-CH2-O)。 相似文献
2.
采用氧化石墨烯还原法制备了石墨烯,通过溶液共混法制备了石墨烯增强聚酰亚胺复合材料;研究了石墨烯/聚酰亚胺复合材料的力学和摩擦学性能及摩擦学作用机制。结果表明,随着石墨烯含量增加,复合材料的拉伸强度、断裂伸长率和硬度均呈先上升后下降的趋势,而冲击强度呈先升高而后降低,再升高的趋势。当添加1.0%(质量分数)的石墨烯时,复合材料的拉伸强度和断裂伸长率达到最大值,分别比纯聚酰亚胺提高了149%和652%。石墨烯的加入显著降低了聚酰亚胺复合材料的摩擦系数和磨损率;随石墨烯含量增加,复合材料的磨损率先下降后上升,而摩擦系数先显著降低,尔后平缓减小。随载荷增加,复合材料的磨损率呈平缓下降的趋势;而随滑动速率增加,磨损率呈上升趋势。石墨烯增强的聚酰亚胺复合材料的磨损机理为粘着磨损。 相似文献
3.
聚甲醛/聚四氟乙烯共混物的摩擦学性能研究 总被引:5,自引:0,他引:5
采用冷压-热烧结工艺研制了一系列不同含量PTFE的POM/PTFE共混物,在往复摩擦磨损试验机上评价了共混物的摩擦磨损性能,并利用SEM、XPS和AES对其磨损机理进行了研究。结果表明,在共混物中PTFE的成分增加,不仅可以降低POM/PTFE共混物的摩擦系数,还可以增强POM的耐磨性,主要原因是共混物中POM和PTFE皆向对偶转移,形成了富集PTFE的转移膜。同时发现填加10%~20%PTTE的共混物具有较好的摩擦磨损性能。 相似文献
4.
聚苯酯/石墨/聚甲醛复合材料的制备及摩擦学性能 总被引:7,自引:0,他引:7
为了改善聚甲醛的摩擦学性能,用模压方法制备了聚苯酯/石墨/聚甲醛(Ekonol/G/POM)复合材料,通过摩擦磨损实验方法对材料的摩擦学性能进行了研究,并用SEM对磨损表面进行了观察和分析,在此基础上探讨了复合材料的磨损机理。结果表明:用模压法制备Ekonol/G/POM复合材料是可行的;适量加入Ekonol能改善POM的摩擦磨损性能,得到自润滑性能优良的Ekonol/G/POM复合材料;Ekonol加入量的多少,直接影响着复合材料的磨损机理,随着其含量的增加。磨损机理发生由粘着磨损到疲劳磨损的转变。 相似文献
《高分子材料科学与工程》2021,37(11)
6.
7.
玻璃纤维,碳纤维填充聚甲醛的摩擦磨损性能研究 总被引:3,自引:0,他引:3
利用RFT-Ⅲ往复摩擦磨损试验机测试了玻纤,碳纤填充聚甲醛所形成复合材料的摩擦磨损性能,并利用SEM和XPS研究了其磨损机理,研究发现,填加一定量玻纤,碳纤均可降低聚甲醛的磨损,但填加碳纤效果更好,XPS分析发现钢对偶面上的Fe向玻纤,碳纤复合材料表面发生转移,并生成Fe2O3。 相似文献
8.
PTFE复合材料的摩擦学性能及力学性能 总被引:8,自引:0,他引:8
利用MM-200型磨损试验机,对不同填料填充PTFE复合材料的摩擦磨损性能进行了研究,并探讨了淬火处理对PTFE复合材料摩擦学性能及力学性能的影响.研究发现,几乎所有填料均可大大降低PTFE复合材料的磨损,但其对PTFE复合材料性能的影响差别较大.聚苯脂填充PTFE复合材料虽然具有良好的摩擦磨损性能,但是其拉伸强度较小.PI增大了PTFE复合材料的摩擦系数,随着PI含量的增加,PTFE复合材料的拉伸强度增大,而其伸长率则减小.CdO填充PTFE复合材料虽具有良好的摩擦性能,但其伸长率较大.淬火处理使PTFE复合材料的结晶度下降,从而导致PTFE复合材料的硬度减小、耐磨性变差. 相似文献
9.
以石墨烯和正硅酸乙酯为原料用溶胶-凝胶法制备了Graphene/SiO2纳米复合材料,用球盘式摩擦磨损试验机评价其作为水基润滑添加剂在不同载荷和浓度下的摩擦学性能。用扫描电镜(SEM)、X射线光电子能谱(XPS)等手段表征了摩擦副的表面形貌和元素特征。结果表明:在15N载荷工况下,Graphene/SiO2纳米复合材料作为添加剂在超纯水中含量为0.2%(质量分数)时具有最佳的摩擦学性能,比超纯水的摩擦系数降低了17.9%,钢球磨损率降低了61.7%。基于磨损表面分析提出的润滑机制为:在摩擦过程中,Graphene/SiO2纳米复合材料在磨损表面生成的物理吸附膜、Graphene的层状剪切作用以及SiO2在磨损表面的修复作用和滚珠轴承作用,使超纯水的摩擦学性能提高。 相似文献
10.
以甲基硅油为芯材,三聚氰胺-甲醛树脂为壁材,采用原位聚合法合成了具有自润滑功能的微胶囊(MCLMs);以苯乙烯(St)为单体、偶氮二异丁腈(AIBN)为引发剂、MCLMs为功能填料通过本体浇注法制备了MCLMs/聚苯乙烯(PS)复合材料。采用扫描电镜、透射电镜、纳米压痕仪表征了MCLMs的表观形貌和壳层硬度,通过高速环块摩擦磨损试验机、热重分析和万能试验机评价了复合材料的摩擦磨损性能、热稳定性能和力学性能,对复合材料的磨损形貌进行了观察。结果表明,添加质量分数为15%的MCLMs复合材料在100 N,50 r/min下的摩擦系数为0.22,磨损率降低92%;MCLMs对聚苯乙烯基体增韧效果显著。 相似文献
11.
采用液相超声直接剥离法制备了石墨烯负载纳米Fe3O4复合材料, 用SEM、TEM对其形貌进行了表征, 利用多功能往复摩擦磨损试验仪考察了石墨烯负载纳米Fe3O4复合材料在纯水中的摩擦磨损性能。通过SEM、XPS分别分析了磨痕表面的形貌、典型元素的化学状态, 初步探讨了石墨烯负载纳米Fe3O4复合材料在纯水中的润滑机理。结果表明: 纳米Fe3O4均匀分布于多层石墨烯片层表面和层间, 粒径为20~90 nm; 其作为纯水添加剂具有良好的减摩抗磨性能, 如试验载荷为10 N, 浓度为0.01wt%的石墨烯负载纳米Fe3O4复合材料水分散体系润滑时比纯水润滑的摩擦系数和磨损体积分别下降26.7%和35.4%, 这主要是由于复合材料在磨损表面形成了吸附膜、含石墨烯和纳米Fe3O4的边界润滑膜, 抑制了Fe的氧化, 减轻了摩擦表面的磨损。 相似文献
12.
以片层状NbSe2为原料, 通过粉末冶金复压复烧的方法制备出不同质量分数的NbSe2/Cu复合材料。对复合材料的显微结构、物理性能及摩擦磨损性能进行了研究。结果表明, NbSe2的加入可显著提高材料的摩擦学性能。这是由于复合材料在摩擦热和变形挤压的共同作用下, 基体中NbSe2被逐渐挤出, 形成了NbSe2的固体润滑膜。NbSe2表面镀Cu可提高NbSe2与Cu基体的界面结合强度, 所形成的固体自润滑膜不易脱落且更加完整, 从而使复合材料具有更优异的物理性能和摩擦学性能。 相似文献
13.
为了解聚甲醛复合材料的结晶特性,用转矩流变仪共混-模压成型方法制备了Ekono l/POM复合材料、Ekono l/G/M oS2/POM复合材料。通过X射线衍射(XRD)、差示扫描量热分析(DSC)考察了POM的结晶情况,并测定了材料的熔点、结晶温度。结果表明,Ekono l对POM多数晶面的生长有不利影响;随着Ekono l含量的增加,复合材料的结晶温度小幅升高,相对结晶度增大,然而过量Ekono l对POM结晶不利;G和M oS2对POM的结晶具有良好的促进作用。 相似文献
14.
耐高温聚合物及其复合材料的摩擦学性能研究进展 总被引:1,自引:0,他引:1
综述了聚四氟乙烯(PTFE)、聚苯酯(Ekonol)、聚酰亚胺(PI)、聚醚醚酮(PEEK)、聚苯硫醚(PPS)等几种耐高温聚合物及其复合材料的摩擦学性能的研究现状;并分析了不同种类的填料,如聚合物混合填充、固体润滑剂、纤维、无机化合物以及无机纳米粒子等对耐高温聚合物基复合材料摩擦学性能的影响,许多研究结果表明,适量填料的加入能改善聚合物基复合材料的摩擦学性能,特别是几种填料的协同作用对改善摩擦学性能有更明显的效果. 相似文献
15.
16.
聚苯酯基复合材料的摩擦学性能 总被引:1,自引:0,他引:1
对比考察了炭纤维(CF)、聚四氟乙烯(PTEE)、单独和混合填充聚苯酯复合材料的摩擦磨损性能,利用扫描电子显微镜(SEM)分析了磨损面形貌,并探讨了其摩擦磨损机理.结果表明,CF、PTEE填充Ekonol复合材料,比CF或PTEE单独填充复合材料的低摩擦系数、低磨损率还分剐降低了17%、48%,是纯Ekonol摩擦系数的58%,耐磨性的1.8×104倍.CF、PTEE二者表现出了协同润滑与减磨效应.PTEE改善了难熔基体颗粒之间以及基体与纤维之间的粘接,而含量适当的CF对Ekonol起到了承载作用,且协助形成连续、均匀的转移膜. 相似文献
17.
纤维/Ekonol/PTFE复合材料的力学与摩擦学性能研究 总被引:1,自引:0,他引:1
对比考察了碳纤维(CF)、六钛酸钾晶须(PTW)分别与聚苯酯(Ekonol)混合填充对聚四氟乙烯(PTFE)复合材料的力学与摩擦学性能的影响,并探讨了内部机理.结果表明:PTW相比于传统纤维CF,尺寸细微,具有微区增强特性,PTW的填充提高了Ekonol/PTFE复合材料的致密程度,协助形成更为均匀、致密的转移膜,相比于CF/Ekonol/PTFE复合材料,有着较好的力学性能、摩擦稳定性、耐磨性,进一步改善了Ekonol/PTFE复合材料的综合性能.纤维、Ekonol混合填充PTFE,二者表现出协同润滑与减磨效应.纤维协助均匀、致密的转移膜的形成;而硬质Ekonol颗粒在纤维和对偶之间可能起到了一种第三体滚动效应,避免了纤维受到较为严重的磨损,从而提高复合材料的摩擦磨损性能. 相似文献
18.
用分光光度法定量评定润滑油中石墨烯的浓度,根据石墨烯的浓度(0.0125~0.075 mg/mL)与润滑油吸光度之间的正相关特性考察了石墨烯的初始浓度、超声处理时间以及表面活性剂掺量等因素对石墨烯改性润滑油悬浮分散特性的影响和最佳工艺参数范围,并将优化出的分散性良好、长期稳定悬浮的石墨烯改性润滑油用于摩擦学性能测试。结果表明,适当的超声分散和表面改性可提高石墨烯改性润滑油的分散悬浮效果。石墨烯浓度为0.025 mg/mL时石墨烯改性润滑油的摩擦系数降低74.78%,磨斑尺寸减小了28.33%。 相似文献
19.
等离子处理碳纤维织物复合材料的摩擦学性能 总被引:2,自引:0,他引:2
将碳纤维织物浸渍-涂层酚醛-缩醛粘结剂树脂,加压固化后制备出碳纤维织物复合材料.分析了摩擦磨损表面和经等离子体处理后碳纤维织物化学组成的变化,研究了摩擦磨损性能、拉伸性能和粘结性能.结果表明,碳纤维织物的磨损分为严重磨损和稳定磨损两个阶段,其中严重磨损阶段的磨损量占了总磨损量的87%.经过等离子体处理后,在碳纤维织物的表面产生了许多活性基团如羰基、羧基、酯基,表面活性元素的含量明显增多;碳纤维织物的浸润性增大,提高了其与粘结剂的结合强度和结合量,增强了织物纤维束间的结合力;固化后与粘结剂构成很好的整体材料,增强了纤维束抗变形和抗断裂能力,使载荷和摩擦力可以平均的分配在纤维上,避免应力集中,从而提高了碳纤维织物复合材料的摩擦学性能和力学性能. 相似文献
20.
以硅烷偶联剂KH560为表面活性剂对石墨烯进行表面改性,以改性石墨烯为增强体,环氧树脂为基体制备了改性石墨烯/环氧树脂复合材料,研究了改性石墨烯含量、载荷对复合材料的摩擦磨损性能的影响。结果表明,硅烷偶联剂KH560成功嫁接至石墨烯表面;改性石墨烯降低了环氧树脂的磨损量和摩擦系数,且改性石墨烯/环氧树脂复合材料的磨损量和摩擦系数随改性石墨烯含量增加均减小,当载荷为150 N、改性石墨烯含量为0.5%时,复合材料的磨损量和摩擦系数分别降低了44.9%和17.4%;随着载荷增加,改性石墨烯/环氧树脂复合材料的磨损量和摩擦系数均减小;低载荷下,纯环氧树脂及改性石墨烯/环氧树脂复合材料的磨损形式主要为疲劳磨损,改性石墨烯能抑制微裂纹的产生及扩展;载荷增加后,纯环氧树脂及改性石墨烯/环氧树脂复合材料的磨损形式主要为磨粒磨损,且复合材料磨损表面的犁沟相对较少。 相似文献