共查询到20条相似文献,搜索用时 0 毫秒
1.
Salman HH Gamazo C Campanero MA Irache JM 《Journal of nanoscience and nanotechnology》2006,6(9-10):3203-3209
The aim of this work was to design mannosylated Gantrez AN nanoparticles (M-NP) and to describe their gut bioadhesive properties in order to develop a promising carrier for future applications in oral drug delivery. For that purpose, the process of the nanoparticles coating with mannosamine was optimized by the incubation of Gantrez AN nanoparticles with different volumes of mannosamine aqueous solutions at different times. Then, the nanoparticles were characterized by measuring the size, zeta potential, mannosamine content, and concanavalin A (Con A) binding. Furthermore, in vivo quantitative bioadhesion study and kinetic analysis of the bioadhesion curves were performed after oral administration to rats of fluorescently labelled nanoparticles. The selected mannosylated nanoparticles (M-NP1 and M-NP10) were of homogenous sizes (about 300 and 200 nm), negatively charged and successfully coated with 36 and 18 microg mannosamine/mg NP, respectively. In vitro agglutination assay using Con A confirmed the successful coating of nanoparticles with mannosamine. The gut distribution profile of M-NP1 indicated a stronger bioadhesive capacity than M-NP10 and non-mannosylated ones, 1 h post-administration. Interestingly, M-NP1 showed an important ileum tropism where around 20% of the given dose remained adhered. Besides, the kinetic parameters of the bioadhesion profile of M-NP1 indicated their higher bioadhesive capacity with Q(max) and AUC(adh) about 2-times higher than control ones. Moreover, fluorescence microscopy corroborated the stronger interactions of M-NP1 with the normal mucosa and demonstrated a strong uptake of these carriers by Peyer's patches. In conclusion, we propose that mannosylated nanoparticles could be a promising non-live vector for oral delivery strategies. 相似文献
2.
Ren LL Wu Y Han D Zhao LD Sun QM Guo WW Sun JH Wu N Li XQ Zhai SQ Han DY Young WY Yang SM 《Journal of nanoscience and nanotechnology》2010,10(11):7262-7265
Mammalian cochlear hair cells don't regenerate naturally after injury, which usually leave permanent hearing loss. Math1 gene is a positive regulator of hair cell differentiation during cochlear development and was proved to be very critical in hair cell regeneration in deaf animals. Generating new cochlear hair cells by forced Math1 expression may be a cure for hearing loss. However, satisfying gene delivering vectors in gene therapy are not available. We combined quaternized chitosan (QCS) with Na-carboxymethyl-beta-cyclodextrin (CM-beta-CD) as novel non-viral vector, which adsorbs pRK5-Math1-EGFP perfectly at the mass ratio of 4:1. In vitro cell transfection can reach a 40% transfect efficiency and relatively low cytotoxity than liposomes. These results suggest that QCS/CM-beta-CD nanoparticle complexes could be a novel non-viral gene carrier in further clinical application. 相似文献
3.
4.
Akin D Sturgis J Ragheb K Sherman D Burkholder K Robinson JP Bhunia AK Mohammed S Bashir R 《Nature nanotechnology》2007,2(7):441-449
Nanoparticles and bacteria can be used, independently, to deliver genes and proteins into mammalian cells for monitoring or altering gene expression and protein production. Here, we show the simultaneous use of nanoparticles and bacteria to deliver DNA-based model drug molecules in vivo and in vitro. In our approach, cargo (in this case, a fluorescent or a bioluminescent gene) is loaded onto the nanoparticles, which are carried on the bacteria surface. When incubated with cells, the cargo-carrying bacteria ('microbots') were internalized by the cells, and the genes released from the nanoparticles were expressed in the cells. Mice injected with microbots also successfully expressed the genes as seen by the luminescence in different organs. This new approach may be used to deliver different types of cargo into live animals and a variety of cells in culture without the need for complicated genetic manipulations. 相似文献
5.
Self assembly of DNA nanoparticles with polycations for the delivery of genetic materials into cells
Increasing attention has been paid to technology used for the delivery of genetic materials into cells for gene therapy and the generation of genetically engineered cells. So far, viral vectors have been mainly used because of their inherently high transfection efficiency of gene. However, there are some problems to be resolved for the clinical applications, such as the pathogenicity and immunogenicity of viral vectors themselves. Therefore, many research trials with non-viral vectors have been performed to enhance their efficiency to a level comparable to the viral vector. Two directions of these trials exist: Material improvement of non-viral vectors and their combination with various external physical stimuli. In this study gelatin was selected as a non-viral carrier for DNA. To give a positive charge to gelatin, different extents introduction of ethylenediamine (Ed), spermidine (Sd), and spermine (Sm) were reacted with gelatin in the presence of a water-soluble carbodiimide. When positively charged gelatin derivatives (Ed, Sd, and Sm) were mixed with negatively charged DNA, a self assembly of DNA nanoparticle (complex) was formed within few minutes through electrostatic interaction. Irrespective of the type of gelatin derivatives, the apparent molecular size of DNA was reduced by increasing the gelatin/DNA mixing ratio to attain a saturated value of about 150 nm. The condensed gelatin/DNA complexes showed the zeta potential of 10-15 mV. The amount of DNA internalized into the cells was significantly increased by the complexation with every gelatin derivative. The cells incubated with the gelatin/DNA complexes exhibited significantly stronger luciferase activities than naked plasmid DNA. This study clearly demonstrates and self-assembled DNA complexes has potential as a gene delivery vechile and are stable to transfer genetic materials to cells. 相似文献
6.
Sarah Baltzley Azzam A. Malkawi Motasem Alsmadi 《Drug development and industrial pharmacy》2018,44(9):1467-1472
Introduction: The aim of this study was to investigate ketorolac (KT) systemic absolute bioavailability after sublingual (SL) administration in vivo to conscious rabbits. Furthermore, the study investigated the potential use of chitosan nanoparticles as a delivery system to enhance the systemic bioavailability of KT following SL administration.Methods: Ketorolac-loaded chitosan nanoparticles were prepared through ionotropic gelation of chitosan with tripolyphosphate anions. The KT-nanoparticles were administered SL as a spray to rabbits and KT plasma concentration at predetermined time points was compared to SL spray administration of KT in solution. The concentrations of KT in plasma were analyzed by ultra-performance liquid chromatography mass spectroscopy (UPLC/MS).Results: KT-loaded chitosan nanoparticles significantly (p?.05) enhanced systemic absorption with 97% absolute bioavailability as compared to 70% after SL administration of KT solution.Conclusions: The results of the present study suggest that SL absorption of KT illustrated flip-flop kinetics with prolonged persistence in the body compared to intravenous administration. Formulation of KT as chitosan nanoparticles has increased its systemic bioavailability after SL spray administration. The new delivery system could be an attractive approach for the delivery of KT. 相似文献
7.
The purpose of this work was to determine the stability of pDNA/poly(L-lysine) complex (DNA/PLL) during microencapsulation, prepare transferrin (TF) conjugated PEGylated nanoparticles (TF-PEG-NP) loading DNA/PLL, and assess its physicochemical characteristics and in vitro transfection efficiency. The DNA/PLL was prepared by mixing plasmid DNA (pDNA) in deionized water with various amounts of PLL. PEGylated nanoparticles (PEG-NP) loading DNA/PLL were prepared by a water-oil-water double emulsion solvent evaporation technique. TF-PEG-NP was prepared by coupling TF with PEG-NP. The physicochemical characteristics of TF-PEG-NP and in vitro transfection efficiency on K562 cells were measured. The results showed that free pDNA reserved its double supercoiled form (dsDNA) for only on average 25.7% after sonification, but over 70% of dsDNA was reserved after pDNA was contracted with PLL. The particle size range of TF-PEG-NP loading DNA/PLL was 150-450?nm with entrapment efficiency over 70%. TF-PEG-NP exhibited the low burst effect (<10%) within 1 day. After the first phase, DNA/PLL displayed a sustained release. The amount of cumulated DNA/PLL release from TF-PEG-NP with 2% polymer over 7 days was 85.4% for DNA/PLL (1:0.3 mass ratio), 59.8% and 43.1% for DNA/PLL (1:0.6) and DNA/PLL (1:1.0), respectively. To TF-PEG-NP loading DNA/PLL without chloroquine, the percentage of EGFP expressing cells was 28.9% for complexes consisting of DNA/PLL (1:0.3), 38.5% and 39.7% for DNA/PLL (1:0.6) and DNA/PLL (1:1.0), respectively. In TF-PEG-NP loading DNA/PLL with chloroquine, more cells were transfected, the percentage of positive cells was 37.6% (DNA/PLL, 1:0.3), 47.1% (DNA/PLL, 1:0.6) and 45.8% (DNA/PLL, 1:1.0), which meant that the transfection efficiency of pDNA was increased by over 50 times when PLL and TF-PEG-NP were jointly used as a plasmid DNA carrier, in particular, the maximal percentage of positive cells (47.1%) from TF-PEG-NP loading DNA/PLL (1:0.6) was about 70 times the transfection efficiency of free plasmid DNA. The average cell viability of TF-PEG-NP loading DNA/PLL was about 90%, which meant that TF-PEG-NP appeared to be safer than PLL alone. As a result, TF-PEG-NP loading DNA/PLL could be a more effective non-viral vector for the delivery of pDNA. 相似文献
8.
A novel targeted drug delivery system, glucose-conjugated chitosan nanoparticles (GCNPs), was developed for specific recognition and interaction with glucose transporters (Gluts) over-expressed by tumor cells. GC was synthesized by using succinic acid as a linker between glucosamine and chitosan (CS), and successful synthesis was confirmed by NMR and elemental analysis. GCNPs were prepared by ionic crosslinking method, and characterized in terms of morphology, size, and zeta potential. The optimally prepared nanoparticles showed spherical shapes with an average particle size of (187.9 ± 3.8) nm and a zeta potential of (-15.43 ± 0.31) mV. The GCNPs showed negligible cytotoxicity to mouse embryo fibroblast and 4T1 cells. Doxorubicin (DOX) could be efficiently entrapped into GCNPs, with a loading capacity and encapsulation efficiency of 20.11% and 64.81%, respectively. DOX-Ioaded nanoparticles exhibited sustained-release behavior in phosphate buffered saline (pH 7.4). In vitro cellular uptake studies showed that the GCNPs had better endocytosis ability than CSNPs, and the antitumor activity of DOX/GCNPs was 4-5 times effectiveness in 4T1 cell killing than that of DOX/CSNPs. All the results demonstrate that nanoparticles decorated with glucose have specific interactions with cancer cells via the recognition between glucose and Gluts. Therefore, Gluts-targeted GCNPs may be promising delivery agents in cancer therapies. 相似文献
9.
Non-viral vectors have gained increasing attention in gene therapy because of their safety, but with the shortcoming of low transfection efficiency. We have developed a hybrid material as a novel non-viral vector, which combines the advantages of both biopolymer and clay in a gene delivery system. Quaternized chitosan was intercalated into the interlayers of rectorite to obtain a new polymer/layered silicate nanocomposite. In vitro and in vivo toxicity studies revealed that the nanocomposites were biocompatible and non-toxic. At the nanocomposite:pDNA mass ratio of 8:1, they achieved 100% pDNA adsorption capacity. In vitro cell transfection revealed a transfection efficiency of 32.1% at 96?h as shown by a flow-cytometric study, and the intensive green fluorescence protein (GFP) expression could last for up to 120?h. Furthermore, an in vivo transfection study showed that the most prominent GFP expression was observed in the gastric and duodenum mucosa, and good transfection efficiency was also obtained when injected into the muscle. All the results suggest that quaternized chitosan/rectorite nanocomposite is a novel and potential non-viral gene carrier. 相似文献
10.
11.
Ya-fei Zhang Pei Yin Xue-qin Zhao Jūn Wang Jùn Wang Cai-ding Wang Lei Ren Qi-qing Zhang 《Materials science & engineering. C, Materials for biological applications》2009,29(6):2045-2049
Polymeric non-viral vectors, such as chitosan nanoparticles show good biocompatibility, but low transfection efficiency. The objective of this study was to improve the transfection efficiency of chitosan based non-viral vectors by using o-carboxymethyl-chitosan which is a kind of water-soluble chitosan derivative and also has good biocompatibility. O-Carboxymethyl-chitosan-organosilica hybrid nanoparticles (CMG NPs) were synthesized through a rapid one-step aqueous synthetic approach for gene delivery. The size of nanoparticles was 276 ± 25 nm and zeta potential was 31.6 ± 0.4 mV in deionized water. Zeta potential increased with the decrease of pH, and it had been discovered that pH = 5.5 is the best point for CMG NPs to bond with plasmid DNA. DNA inclusion and integrity was evaluated by gel electrophoresis, and it is indicated that CMG NPs could protect DNA against DNase I and serum degradation. The results of MTT for cell viability and in vitro transfection also support the idea that CMG NPs could be used as efficient and safe vectors for gene delivery. 相似文献
12.
Rajalakshmi Rukmangathen Prasanna Raju Yalavarthi 《Drug development and industrial pharmacy》2013,39(8):1342-1350
Objective: High lipophilicity and extensive hepatic metabolism limits the oral application of risperidone in the treatment of CNS disorders. In order address this limitation, risperidone (RS) loaded chitosan nanoparticles (CS-NPs) were processed for intranasal administration in the management of schizophrenia. Methods: RS loaded CS-NPs were prepared by ionic gelation of chitosan with tripolyphosphate and stabilized by tween 80/ poloxamer 188. The CS-NPs were characterized by FTIR, DSC, particle size, zeta potential and surface morphology. Entrapment efficiency, mucoadhesive strength, in vitro drug release, and release kinetics of CS-NPs were evaluated. Pharmacokinetics and pharmacodynamics of RS loaded CS-NPs were studied using Wistar rats. Stereotypy behavior and swimming normalization tests were conducted in amphetamine induced psychosis in animals.Results: Risperidone nanoparticles (RP12) were produced with an average size of 86 nm, polydispersity index of 0.287, zeta potential of +36.6 mV, mucoadhesion of 68.9% and entrapment efficiency of 77.96%. CS-NPs released the RS in controlled manner with Fickian diffusion mode. Maximum concentration of RS in plasma was 1240 ng/ml at 4 h for RP12, and 403.8 ng/ml at 2 h for RS sample. RS loaded CS-NPs significantly reduced the stereotypy score in experimental animals that indicated the efficiency of CS-NPs in delivery of RS at brain tissues and moreover amphetamine effect was reversed. Thus, RS loaded CS-NPs proved as potential delivery systems against induced psychotic disorders. Conclusion: Risperidone loaded chitosan nanoparticles were effective against schizophrenia via intranasal route. 相似文献
13.
Cuña M Alonso-Sandel M Remuñán-López C Pivel JP Alonso-Lebrero JL Alonso MJ 《Journal of nanoscience and nanotechnology》2006,6(9-10):2887-2895
The aim of the present work was to develop a new nanoparticle carrier, adapted for the oral administration of proteins and their delivery to the immune system. Chitosan and phosphorylated glucomannan were chosen as major constituents of the nanoparticles. Chitosan nanoparticles were formed by ionic gelation and then coated with glucomannan. Two different protocols were adopted for the formation of the glucomannan coating: protocol I, in which chitosan nanoparticles were isolated before their coating; protocol II, in which chitosan nanoparticles were not isolated, but coated with glucomannan in the presence of free chitosan. The results showed that, under the selected formulation conditions, the sizes of the nanoparticles ranged between 170 and 300 nm and their zeta potential values were inverted from positive to negative by the glucomannan coating. The nanoparticles prepared by the two protocols could be freeze-dried, in the presence or absence of cryoprotective agents, preserving their original characteristics. The results of the stability study evidenced the positive role of the glucomannan coating in preventing the aggregation of the nanoparticles in buffered media. Finally, the association of the inmunomodulatory protein complex P1 to the chitosan-glucomannan nanoparticles was investigated. The results showed that the association was not dependent on the chitosan: sodium tripoliphosphate ratio, but it was significantly affected by the presence of sodium phosphate in the protein structure. 相似文献
14.
Bartczak D Sanchez-Elsner T Louafi F Millar TM Kanaras AG 《Small (Weinheim an der Bergstrasse, Germany)》2011,7(3):388-394
A new strategy to manipulate cell operations is demonstrated, based on membrane-receptor-specific interactions between colloidal peptide-capped gold nanoparticles and human umbilical vein endothelial cells. It is shown that colloidal gold nanoparticles of similar charge and size but capped with different peptide sequences can deliberately trigger specific cell functions related to the important biological process of blood vessel growth known as angiogenesis. Specific binding of the peptide-capped particles to two endothelial-expressed receptors (VEGFR-1, NRP-1), which control angiogenesis, is achieved. The cellular fate of the functional nanoparticles is imaged and the influence of the different peptide-coated nanoparticles on the gene expression profile of hypoxia-related and angiogenic genes is monitored. The findings open up new avenues towards the deliberate biological control of cellular functions using strategically designed nanoparticles. 相似文献
15.
Jie Jiang Ying Liu Yang Qiu Xiaoyan Xu Huiling Lv 《Drug development and industrial pharmacy》2017,43(8):1304-1313
In this study, biodegradable chitosan hollow nanospheres (CHN) were fabricated using polystyrene nanospheres (PS) as templates. CHN were applied to increase the solubility of poorly water-soluble drugs. The lung cancer drug paclitaxel (PTX), which is used as a model drug, was loaded into CHN by the adsorption equilibrium method. The drug-loaded sample (PTX-CHN) offered sustained PTX release and good bioavailability. The state characterization of PTX by differential scanning calorimetry (DSC), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) showed that the PTX absorbed into CHN existed in an amorphous state. An in vitro toxicity experiment indicated that CHN were nontoxic as carriers of poorly water-soluble drugs. The PTX-CHN produced a marked inhibition of lung cancer A549 cells proliferation and encouraged apoptosis. A cell uptake experiment indicated that PTX-CHN was successfully taken up by lung cancer A549 cells. Furthermore, a degradation experiment revealed that CHN were readily biodegradable. These findings state clearly that CHN can be regarded as promising biomaterials for lung cancer treatment. 相似文献
16.
Meihua Yu Yuting Niu Jun Zhang Hongwei Zhang Yannan Yang Elena Taran Siddharth Jambhrunkar Wenyi Gu Peter Thorn Chengzhong Yu 《Nano Research》2016,9(2):291-305
Silica-based nanoparticles are promising carriers for gene delivery applications. To gain insights into the effect of particle size on gene transfection efficiency, amine-modified monodisperse Stöber spheres (NH2-SS) with diameters of 125, 230, 330, 440, and 570 nm were synthesized. The in vitro transfection efficiencies of NH2-SS for delivering plasmid DNA encoding green fluorescent protein (GFP) (pcDNA3-EGFP, abbreviated as pcDNA, 6.1 kbp) were studied in HEK293T cells. NH2-SS with a diameter of 330 nm (NH2-SS330) showed the highest GFP transfection level compared to NH2-SS particles with other sizes. The transfection efficiency was found as a compromise between the binding capacity and cellular uptake performance of NH2-SS330 and pcDNA conjugates. NH2-SS330 also demonstrated the highest transfection efficiency for plasmid DNA (pDNA) with a bigger size of 8.9 kbp. To our knowledge, this study is the first to demonstrate the significance of particle size for gene transfection efficiency in silica-based gene delivery systems. Our findings are crucial to the rational design of synthetic vectors for gene therapy. 相似文献
17.
Cytosolic delivery of membrane-impermeable molecules in dendritic cells using pH-responsive core-shell nanoparticles 总被引:3,自引:0,他引:3
Polycations that absorb protons in response to the acidification of endosomes can theoretically disrupt these vesicles via the "proton sponge" effect. To exploit this mechanism, we created nanoparticles with a segregated core-shell structure for efficient, noncytotoxic intracellular drug delivery. Cross-linked polymer nanoparticles were synthesized with a pH-responsive core and hydrophilic charged shell designed to disrupt endosomes and mediate drug/cell binding, respectively. By sequestering the relatively hydrophobic pH-responsive core component within a more hydrophilic pH-insensitive shell, nontoxic delivery of small molecules and proteins to the cytosol was achieved in dendritic cells, a key cell type of interest in the context of vaccines and immunotherapy. 相似文献
18.
Hao Y Yang X Shi Y Xing J Marowitch J Chen J Chen J 《Journal of nanoscience and nanotechnology》2012,12(8):6287-6293
In this paper, fluorescein isothiocyanate (FITC) was covalently bonded with magnetic single-walled carbon nanotubes (mSWCNTs) that were purified using our previous method. To demonstrate our design, mSWCNT-FITC was delivered into plant cells (canola and carrot cells) driven by external magnetic forces. From FACS results, the FITC delivery efficiency was about 100% for both two canola and carrot protoplasts, which were further confirmed by the confocal and sectional TEM images. Some mSWCNTs were found trapped both inside the endosomes of canola protoplast and outside endosome near the nuclear membrane of carrot protoplast according to the sectional TEM images. All results showed that mSWCNT is a good delivery carrier for biomolecules. 相似文献
19.
A general method of coating polymer/DNA nanoparticles was developed. Peptide coated nanoparticles were found to have favorable biophysical characteristics including small particle size, near-neutral zeta potential, and stability in serum. At appropriate formulation conditions including near-neutral charge ratio, the coated nanoparticles enabled effective ligand-specific gene delivery to human primary endothelial cells in serum-containing media. As this nanoparticulate drug delivery system has high efficacy, ligand-based specificity, biodegradability, and low cytotoxicity, it may be potentially useful in several clinical applications. 相似文献
20.
Dan-Dan Li Jian-Feng Pan Qiu-Xia Ji Xin-Bo Yu Ling-Shuang Liu Hui Li Xiao-Ju Jiao Lei Wang 《Journal of materials science. Materials in medicine》2016,27(8):134
A novel injectable chitosan thermosensitive hydrogel was designed as a target multi-effect scaffold for endogenous repair of the periodontium. The hydrogel complex was designed by embedding chitosan nanoparticles (CSn) loaded with bone morphogenetic protein-2 plasmid DNA (pDNA-BMP2) into a chitosan (CS)-based hydrogel with α,β-glycerophosphate (α,β-GP), termed CS/CSn(pDNA-BMP2)-GP. Characterization, the in vitro release profile for pDNA-BMP2, and cytocompatibility to human periodontal ligament cells (HPDLCs), were then conducted. The average diameter of the CSn(pDNA-BMP2) was 270.1 nm with a polydispersity index (PDI) of 0.486 and zeta potential of +27.0 mv. A DNase I protection assay showed that CSn could protect the pDNA-BMP2 from nuclease degradation. Encapsulation efficiency and loading capacity of CSn(pDNA-BMP2) were more than 80 and 30 %, respectively. The sol–gel transition time was only 3 min when CSn(pDNA-BMP2) was added into the CS/α,β-GP system. Scanning electron microscopy showed that CSn(pDNA-BMP2) was randomly dispersed in a network with regular holes and a porous structure. Weighting method showed the swelling ratio and degradation was faster in medium of pH 4.0 than pH 6.8. An in vitro pDNA-BMP2 release test showed that the cumulative release rate of pDNA-BMP2 was much slower from CS/CSn-GP than from CSn in identical release media. In release media with different pH, pDNA-BMP2 release was much slower at pH 6.8 than at pH 4.0. Three-dimensional culture with HPDLCs showed good cell proliferation and the Cell-Counting Kit-8 assay indicated improved cell growth with the addition of CSn(pDNA-BMP2) to CS/α,β-GP. In summary, the CS/CSn(pDNA-BMP2)-GP complex system exhibited excellent biological properties and cytocompatibility, indicating great potential as a gene delivery carrier and tissue regeneration scaffold for endogenous repair of the periodontium. 相似文献