首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
退火温度对高纯Al-1wt% Si合金组织及性能的影响   总被引:1,自引:0,他引:1  
用光学显微镜、扫描电镜观察,硬度、电导率的测试,观察高纯Al-1wt%Si合金中共晶相分布随再结晶退火温度的变化,研究其对材料组织、硬度及电导率的影响.结果表明,合金开始再结晶温度为300℃,晶粒开始长大温度为450℃;合金硬度值随共晶Si相固溶量的增大而升高,电导率随其固溶量的增大而降低;共晶Si相在a-Al基体中固溶时,退火温度高于450℃扩散系数增大、510℃达到固溶极限.  相似文献   

2.
采用热浸镀方法在第三代汽车钢表面制备了3种不同组分的合金镀层,研究了Al含量和Si元素添加对合金镀层物相组成、显微组织、显微硬度、耐腐蚀性能的影响。结果表明:Zn-0.6Al-1.6Mg、Zn-1.8Al-1.6Mg和Zn-1.8Al-1.6Mg-0.25Si合金镀层的主要物相都为Zn、Al和MgZn_2,在Zn-1.8Al-1.6Mg-0.25Si合金镀层中还出现了黑色的针状Mg_2Si相,增加Al含量和添加Si元素后,合金镀层的晶粒更加细小、组织均匀性提高;Zn-0.6Al-1.6Mg、Zn-1.8Al-1.6Mg和Zn-1.8Al-1.6Mg-0.25Si合金镀层的显微硬度分别为164.5、186.1、195.4 HV,不同组分的合金镀层的耐腐蚀性能从高至低顺序为Zn-1.8Al-1.6Mg-0.25SiZn-1.8Al-1.6MgZn-0.6Al-1.6Mg,在合金镀层中增加Al含量或者添加Si元素都有助于提升合金镀层的显微硬度和耐腐蚀性能。  相似文献   

3.
采用均匀设计方法对含P量为10.98wt%的Ni-P化学镀层的热处理加热温度和加热时间进行了优化,借助X射线衍射仪和硬度试验对其组织和硬度进行了分析.结果表明,试验条件下,Ni-P化学镀层的最大硬度与加热温度有较大关系,与加热时间关系不大,而且,当加热温度约为430 ℃时,镀层硬度最高;随着热处理温度的升高,镀层组织逐渐由非晶转变为微晶,Ni3P晶体相逐渐析出并长大,这一过程最终影响着镀层硬度的变化.  相似文献   

4.
目的提高Ni-P镀层的硬度。方法在化学镀Ni-P过程中添加SiO2微粒,形成Ni-P-SiO2复合镀层,研究施镀温度、微粒添加量和镀后热处理温度对复合镀层微观结构及硬度的影响。结果复合镀层含非晶结构Ni和SiO2相。随施镀温度的升高及SiO2微粒添加量的增加,镀层表面变得均匀、致密且硬度升高,显微硬度最高达355HV;当施镀温度超过80℃,微粒添加量超过10 g/L时,镀层表面均匀性变差,硬度下降。经热处理后,镀层向晶态转变,热处理温度达到300℃时开始析出Ni3P相,镀层的显微硬度随热处理温度的升高而升高。结论当施镀温度为80℃、微粒添加量为10 g/L时,所得复合镀层的性能较为优异,热处理可进一步提高复合镀层的硬度。  相似文献   

5.
目的提高Ni-P镀层的硬度。方法在化学镀Ni-P过程中添加SiO2微粒,形成Ni-P-SiO2复合镀层,研究施镀温度、微粒添加量和镀后热处理温度对复合镀层微观结构及硬度的影响。结果复合镀层含非晶结构Ni和SiO2相。随施镀温度的升高及SiO2微粒添加量的增加,镀层表面变得均匀、致密且硬度升高,显微硬度最高达355HV;当施镀温度超过80℃,微粒添加量超过10 g/L时,镀层表面均匀性变差,硬度下降。经热处理后,镀层向晶态转变,热处理温度达到300℃时开始析出Ni3P相,镀层的显微硬度随热处理温度的升高而升高。结论当施镀温度为80℃、微粒添加量为10 g/L时,所得复合镀层的性能较为优异,热处理可进一步提高复合镀层的硬度。  相似文献   

6.
热处理对化学沉积Ni-Zn-P合金组织与性能的影响   总被引:4,自引:0,他引:4  
用X射线衍射、失重、冲蚀和光催化法研究热处理对化学沉积Ni-Zn-P 合金结构、显微硬度、冲蚀特性和光催化性的影响.结果表明,镀态Ni-Zn-P合金主要由非晶相和立方镍两相构成;加热到400 ℃出现四方Ni3P相,至500 ℃出现Ni5Zn12相;镀层的显微硬度在500 ℃以下随温度的升高而增加,超过500 ℃反而随着温度升高而下降;在0.05 mol/L的盐酸冲蚀下原镀层比热处理后的耐冲蚀性好,热处理后镀层的耐冲蚀特性受冲蚀时间、冲蚀角度和介质流速的影响;经过200和300 ℃热处理的镀层具有光催化特性.  相似文献   

7.
对真空电弧炉熔炼后的Al-52%Gd(质量分数)合金在不同温度下进行热处理,利用光学显微镜、扫描电镜、洛氏硬度计等研究了不同加热温度对其凝固组织和硬度的影响。结果表明,当加热温度为600 ℃时,初晶相由粗大发达树枝晶被较均匀的等轴晶取代;共晶相的形态由片网状向短杆状、点状过渡,生长方式逐渐由附着在初晶相周围生长向独立生长转变;硬度的变化为随着加热温度升高先下降后上升再迅速下降,中心硬度值与均值硬度在不同加热温度下有所差异,主要由凝固组织的疏松和初晶相Al3Gd的形态与分布决定。  相似文献   

8.
对新型V-Cr-Mo-Nb-W复合轧辊用高速钢空冷淬火、回火后的力学性能和金相组织进行了研究。结果表明,当加热温度低于800℃空冷淬火时,随着温度的升高,V-Cr-Mo-Nb-W复合轧辊用高速钢的硬度值不断降低;当温度为800℃时,硬度值最低;处理温度为800~1050℃时,随温度的提高硬度不断提高,在1000~1050℃内硬度达到最高值。该钢具有良好的回火抗力,经1050℃×1 h空冷淬火、600℃回火后硬度>58HRC。不同的铸造条件对材料硬度的影响不大。高速钢材料在800℃空冷淬火处理后软化性能最好,便于加工。  相似文献   

9.
采用SEM和XRD法,分析了磁控溅射CrTiAliN梯度镀层的表面与断口形貌及其相组成随加热温度的变化规律。研究表明:CrTiAliN镀层在600℃之前物相和组织结构保持稳定,随后的升温过程中有相变行为,随着温度的升高,物相由以致密的非晶态物质为主,依次出现CrN、Cr2O3相和AlN等物相;相变的发生有利于镀层保持高温硬度和结合力。加热至900℃时,尽管在镀层表面观察到微区融化现象,但膜基结合紧密;加热至1100℃时镀层表面出现开裂并伴有剥落现象。从温度对镀层的氧化形貌及物相、组织转变机理分析,CrTiAlN梯度镀层在≤900℃时有良好的热稳定性。  相似文献   

10.
利用化学镀方法在TC4钛合金表面成功制备结合力良好的Ni-P合金耐磨层,研究了提高镀层结合力的方法,结合SEM、XRD、EDS等现代物理分析方法分析了不同温度热处理后镀层的组织结构,从而建立不同热处理温度、镀层结构与镀层硬度和耐磨性能的关系。结果表明:二次浸锌活化方法和热处理能显著提高镀层与基体的结合强度,经600℃热处理后镀层结合力达到35N。基材的硬度HV为3780MPa,磨损量为9.6mg,镀态镀层的硬度HV为5760MPa、磨损量为7.7mg。随着热处理温度升高Ni3P相增多,该相的弥散分布使镀层硬度增加,最高硬度HV达到9790MPa,但400℃后硬度降低,这是由于Ni3P相随着热处理温度的继续升高而发生偏聚,使弥散强化程度下降;镀层的磨损量随着热处理温度的升高而减小,说明耐磨性能随着热处理温度的升高而增强,600℃热处理后,虽然镀层晶粒长大、粗化及镀层硬度降低,但此时镀层晶格的完整性最佳,镀层塑性和韧性提高,所以耐磨性能最好。  相似文献   

11.
热处理温度对45钢化学镀Ni-P合金镀层的组织与性能的影响   总被引:2,自引:1,他引:1  
研究了热处理温度对45钢化学镀Ni-P合金镀层组织形貌和性能的影响.结果表明:在给定实验条件下,随加热温度的升高,镀层表面的胞状组织趋于扁平;镀层硬度随加热温度的升高而增大,至400℃时硬度达最大,而后随加热温度的升高而下降.研究还表明,镀层具有优良的耐盐酸腐蚀性能.  相似文献   

12.
脉冲电沉积Ni-W-P合金镀层的硬度研究   总被引:2,自引:1,他引:1  
张欢  郭忠诚 《表面技术》2004,33(2):15-16,21
研究了脉冲电沉积的Ni-W-P合金镀层的硬度.研究表明:脉冲频率和占空比对镀层的硬度都有很大的影响;在镀态和不同的热处理条件下,脉冲镀层的硬度都比直流镀层的硬度高100~200HV;热处理温度小于600℃时,镀层的硬度随温度的升高而升高,加热温度继续升高,镀层硬度呈直线下降;在400℃热处理条件下,随着热处理时间的延长,镀层的硬度增加,当热处理时间达到3h时,镀层硬度最高.  相似文献   

13.
研究了不同热处理温度对化学镀Ni-Co-P镀层组织和性能的影响.结果表明:在给定实验条件下,原始镀态Ni-Co-P镀层组织呈非晶结构胞状形态.随加热温度升高至400℃时,经XRD分析可知,镀态的非晶结构Ni-Co-P镀层发生部分晶化,析出亚稳相Ni12P5,500℃热处理后完全晶化,亚稳相转变为稳定的Ni,P相,镀层表面形貌变化不大,但当600℃热处理后镀层表面形貌由胞状变为蠕虫状.镀层硬度随热处理温度的升高先增后降,至400℃时硬度达到最高值,而后随温度的升高而下降,与组织结构的变化相吻合.研究还表明,Ni-Co-P镀层同Ni-P镀层相比,具有更优异的耐硫酸腐蚀性能.  相似文献   

14.
采用闭合场非平衡磁控溅射离子镀技术制备了掺Cr类石墨镀层,研究了真空退火温度对镀层的硬度、结合强度、摩擦系数和比磨损率的影响规律,通过X射线衍射(XRD)分析了镀层结构随退火温度的变化.结果表明:随退火温度的升高,镀层有新相生成,镀层的膜基结合强度降低,镀层硬度随温度的升高先增加后降低,退火温度为500℃时,镀层显微硬度最大;随退火温度的升高镀层摩擦系数呈现出先降低后升高的变化趋势,比磨损率逐渐增大.  相似文献   

15.
采用固液混合铸造技术制备了Al-10Mn合金坯料,将坯料进行热挤压加工,研究了加热温度对挤压加工的影响及传统铸造、固液混合铸造以及固液混合铸造坯料的热挤压加工制备的Al-10Mn合金的显微组织和力学性能。结果表明:固液混合铸造合金的析出相细小、均匀、圆整,抗拉强度提高到130 MPa,热挤压后合金的抗拉强度增加到181 MPa;当坯料加热温度为600℃时,挤压加工的合金具有最好的力学性能和较为均匀的显微组织;当坯料加热温度为570℃时,坯料则不能顺利挤出;而当坯料加热温度高于610℃时,合金力学性能大幅降低。  相似文献   

16.
采用热重分析仪和扫描电镜研究了不同加热温度和升温速率下Ni/Cu比为0.39的低Ni/Cu比含铜钢铜富集行为。研究结果表明:在1050~1300℃加热温度范围内,富集相以富Cu-Ni相和富Ni相为主,且以颗粒形式弥散分布于氧化皮内部或氧化皮与钢基体界面;除1250℃外,随加热温度升高,富集相中Ni/Cu比值逐渐增加,在1200℃和1300℃时,富集相仅为富Ni相。加热温度为1250℃时,升温速率不同,富集相的Ni/Cu比值和氧化皮与钢基体界面形态不同:采用5℃/min低速升温和15℃/min高速升温均有利于增加Ni/Cu比值,而采用10℃/min中速升温导致Ni/Cu比值偏低;增加升温速率,缩短加热时间,使氧化皮与钢基体界面更加平滑,有利于除鳞以改善钢材表面质量。对生产高表面质量低Ni/Cu比含铜钢而言,可采取低温加热或高温加热,将加热温度分别控制在1180~1220℃或者1280~1320℃;也可采用1220~1280℃中温加热,将弱氧化性气氛下分阶段步进梁加热炉的第三阶段升温速率控制在15℃/min左右。  相似文献   

17.
利用扫描电镜(SEM)及附带能谱仪系统(EDS),对镀锌热成形钢不同加热温度热冲压后裂纹形貌与结构进行了研究。结果表明:随着加热温度的提高,镀层中Fe含量升高;由于Γ相的存在,加热温度850℃后热成形,镀层中存在部分扩展至基体的裂纹;900℃或950℃加热后,镀层中不存在Γ相,热成形获得的镀层质量较好,未出现扩展至基体的LMIE裂纹;提高加热温度可以降低LMIE裂纹的出现。  相似文献   

18.
热处理对含Si蒙乃尔合金组织及硬度的影响   总被引:1,自引:0,他引:1  
研究了热处理工艺对含Si蒙乃尔合金组织及硬度的影响。结果表明:固溶温度在820~1120℃之间,合金随着固溶温度的升高,晶界处的β-Ni3Si相的数量明显减少;当固溶温度达到1020℃时,晶界处β-Ni3Si相完全溶解;随着固溶温度的进一步升高,当温度达到1120℃时,晶界因熔化而出现了鱼骨状过烧组织。时效温度在500~700℃之间,合金随着时效温度的升高,合金中的β-Ni3Si强化相的数量逐渐增加,硬度也随之增大;在时效温度为600℃时,β-Ni3Si强化相析出的数量最多,合金硬度最高;时效温度为700℃时,合金中的部分β-Ni3Si相聚集长大,合金硬度降低。  相似文献   

19.
采用离心铸造方法制备初生Si颗粒单独增强Al-18Si初生Si/Mg2Si颗粒混合增强Al-18Si-5Mg铝基复合材料活塞。研究内浇口尺寸、浇注温度、模具温度、离心转速对Al-18Si-5Mg活塞的组织的影响,测试两种离心铸造活塞的硬度和耐磨性能,并与重力铸造Al-18Si活塞进行性能对比。结果表明:内浇口厚度尺寸为8mm,浇注温度为770℃,模具温度为400℃,离心转速为800 r/min时,离心铸造获得成形效果好且无铸造缺陷的Al-18Si、Al-18Si-5Mg活塞,活塞顶部及环槽区分别偏聚有大量的初生Si颗粒和初生Si/Mg2Si颗粒,而活塞裙部为无颗粒的基体组织。离心铸造Al-18Si-5Mg活塞在顶部及环槽的硬度比离心铸造Al-18Si活塞的提高了10%,前者的耐磨性能略优于后者;离心铸造Al-18Si-5Mg活塞顶部及环槽的硬度比重力铸造Al-18Si活塞的提高了10%~20%,且前者的平均磨损量仅为后者的60%~68%.  相似文献   

20.
采用热浸镀法在公路护栏钢Q345表面制备了10种不同组分的低Al镀锌层,采用光学显微镜、扫描电镜、显微硬度计和盐雾腐蚀试验箱等手段,研究了Al、Mg和Si元素对表面镀层显微组织、硬度和耐腐蚀性能的影响。结果表明,Zn-0.6Al-xMg(x=0、1.2)、Zn-1.8Al-1.2Mg和Zn-1.8Al-1.2Mg-0.26Si镀层的物相组成都为Zn、Al、MgZn_2和Fe_2Al_5相;增加Al含量或者Mg含量有助于镀层晶粒细化和组织均匀化,且Si元素的添加有助于进一步细化镀层晶粒;当Mg 1.2%时,Al含量更高的B系列镀层的硬度会高于相同Al含量的A系列镀层,而Mg 1.2%时,B4镀层硬度略低于A4镀层;添加Si的C1和C2镀层的硬度高于A系列和B系列镀层。全浸腐蚀与中性盐雾腐蚀试验结果相吻合,即镀层耐腐蚀性能从高至低顺序为:C1 C2 A4 B4 B3 A3 B2 A2B1 A1,添加0.13Si的C1镀层具有较高的硬度以及最佳耐腐蚀性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号