首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The expressions of uncoupling proteins 2 and 3 (UCP2; UCP3) mRNA were studied in obese (fa/fa) Zucker rats treated with two weight gain reducing agents for three weeks. The specific beta 3-adrenoceptor agonist BRL 35135 (0.5 mg/kg/day orally) increased the expression of UCP3 mRNA by 3.8-fold (P < 0.0001; two-way ANOVA) and that of UCP1 mRNA by 2.6-fold (P = 0.014) in brown adipose tissue, but had no effect on expression of UCP3 mRNA in white fat or in the soleus muscle, or on UCP2 mRNA expression in brown or white fat. The antihyperglycemic metformin (300 mg/kg/day orally) had no effect on expressions of UCP1, UCP2 or UCP3 in any tissue studied. Concentrations of plasma insulin were significantly correlated with the levels of white fat UCP2 mRNA (in the control group: r = 0.89, P = 0.0015) and UCP3 mRNA (in the control group: r = 0.80, P = 0.009) suggesting that insulin may play a role in the control of UCP2 and UCP3 mRNA expressions in white adipose tissue.  相似文献   

2.
We cloned 537 basepairs (bp) of rat partial peroxisome proliferator-activated receptor gamma2 (PPARgamma2) cDNA and examined the effect of fasting or obesity on the expression of two isoforms of rat PPARgamma, gamma1 and gamma2, in either subcutaneous or mesenteric adipose tissue specimens using an RNase A protection assay. In Wistar rats, expression of both isoforms was dramatically reduced after 48 hours of fasting in the two fat tissue specimens. In comparing genetically obese (fa/fa) Zucker rats and lean control rats, no significant difference was observed in expression of the two isoforms in either type of adipose tissue. From these findings, we conclude that the adipose tissue level of rat PPARgamma depends on nutritional deprivation but is not closely associated with either obesity or insulin resistance in obese Zucker rats.  相似文献   

3.
To provide tissue-specific and developmental characteristics of gene expression of rat heart uncoupling protein-2 (UCP2), we investigated developmental alterations of UCPs mRNA expression in the heart and brown adipose tissue (BAT), and examined possible up-regulators of heart UCP2 expression using in vitro studies. Heart UCP2 mRNA expression was low during the early postnatal days followed by a rapid and significant increase in the 2nd postnatal week. Heart UCP3 mRNA remained undetectable until the 2nd postnatal week when the expression reached a small but significant peak. BAT UCP1 mRNA was abundantly expressed in the neonate, but the expression rapidly decreased to the adult level. The studies using cultured cardiomyocytes demonstrated that both 10(-8) M triiodothyronine and 10(-7) M isoproterenol, but not phenylephrine, increased UCP2 mRNA expression. These results indicate that the sympathetic nervous system and/or thyroid hormones may be involved in the up-regulation of heart UCP2 gene expression during postnatal development. The increase in postnatal heart UCP2 may provide a key link between the postnatal energy shift and adaptation of rat pups to their novel environment.  相似文献   

4.
5.
BACKGROUND: The family of uncoupling proteins is thought to play an important role in the regulation of energy metabolism by uncoupling the respiratory chain reactions from ATP synthesis. The recently discovered uncoupling protein 2 (UCP2) is upregulated in genetically obese rodent models and during long term high fat feeding. AIM: We have examined the UCP2 mRNA levels in liver, heart and white adipose tissue (WAT) of obese ventromedial hypothalamus (VMH)-lesioned rats, during the dynamic and the early stage of the static phase of obesity, before the appearance of most of the metabolic perturbations associated with long term established obesity. RESULTS: The amount of UCP2 mRNA was not increased in any tissue of VMH-lesioned rats relative to control animals during the dynamic phase nor during the early static phase of obesity. CONCLUSION: These results indicate that in the rat, obesity does not necessarily lead to an increase in UCP2 expression and suggest that the up-regulation of UCP2 described in other models may be secondary to metabolic perturbations, rather than to a direct adaptative response to the increased adipose tissue content of the organism.  相似文献   

6.
A family of uncoupling proteins (UCPs), free fatty acid anion transporters, plays a crucial role in energy homeostatic thermoregulation. Tumor necrosis factor-alpha (TNF-alpha), a member of the cytokine family, is well known as an endogenous pyrogen. To evaluate the interaction of TNF-alpha with UCPs in thermogenesis, effects of TNF-alpha on rat UCP gene expression were examined in intrascapular brown adipose tissue (BAT), epididymal white adipose tissue (WAT) and soleus muscle (Muscle). Administration of TNF-alpha elevated rectal temperature by 0.7 degree C as well as serum leptin which peaked at 6 h, compared with saline controls. BAT UCP1 mRNA expression was increased by 1.2-fold at 6 h after the TNF-alpha treatment and decreased by 0.8-fold at 16 h after the treatment. In contrast to UCP1 expression in BAT, UCP2 mRNA expressions in BAT, WAT, and Muscle was increased to reach maximum levels of 1.3-, 1.6- and 1.8-fold, respectively, at 16 h after the treatment. UCP3 mRNA in Muscle, but not in BAT or WAT, was exclusively up-regulated by 1.7-fold at 16 h after the treatment. These results indicate that TNF-alpha up-regulates UCP gene expression differentially and tissue dependently, and add novel insights into thermogenesis under conditions of malignancy and inflammation.  相似文献   

7.
The possibility that the leptin receptor (LEPR) mediates autocrine regulation of leptin expression in adipose tissue was examined in 10-day-old Zucker rat pups with different copy numbers of the leptin receptor mutation (Lepr(fa)). Plasma leptin concentrations and adipose tissue mRNA levels for leptin were related to copy number of the mutation (fa/fa > fa/+ > +/+). These relationships were independent of plasma insulin concentration. Reduced copy number for the functional leptin receptor apparently results in a diminished negative feedback signal to the leptin gene in adipose tissue. Thus, leptin appears to close a short regulatory loop controlling its own synthesis in adipose tissue.  相似文献   

8.
Evidence is rapidly emerging which suggests that uncoupling protein 2 (UCP2), by virtue of its ubiquitous expression, may be important for determining basal metabolic rate. To assess the functional modulation of UCP2 gene expression in relation to body weight control, we examined the effects of hyperthyroid state induced by chronic treatment with triiodothyronine (T3) on UCP2 mRNA expression in male rats. Daily subcutaneous injection of T3 (37 pmol/100 g body weight) for 7 days increased UCP2 mRNA expression in brown adipose tissue (BAT), white adipose tissue (WAT) and the soleus muscle 1.6-, 1.6- and 1.7-fold compared to the controls, respectively, and increased UCP1 mRNA expression in BAT 1.2-fold. In contrast, the same treatment with T3 decreased both ob mRNA expression in WAT and plasma leptin level 0.5-fold for each. The present results suggest that T3 may directly increase UCP2 expression independently of leptin action.  相似文献   

9.
Continuous (4 days) intracerebroventricular leptin infusion (12 microg/day) was performed in lean rats, and its hormonometabolic effects were determined. Intracerebroventricular leptin administration did not result in leakage of the hormone into the peripheral circulation. Thus, its effects were elicited by its presence within the central nervous system. Intracerebroventricular leptin infusion produced marked decreases in food intake and body weight gain relative to vehicle-infused fed ad libitum rats. Because decreases in food intake alter hormonometabolic homeostasis, additional control rats pair-fed to the amount of food consumed by leptin-infused ones were included in the study. Intracerebroventricular leptin-infused and vehicle-infused pair-fed rats were characterized, relative to vehicle-infused ad libitum-fed animals, by decreases in body weight and insulinemia and by increases in insulin-stimulated overall glucose utilization and muscle and brown adipose tissue glucose utilization index. Brown adipose tissue uncoupling protein (UCP)1, UCP2, and UCP3 mRNA levels were markedly decreased in pair-fed animals relative to those of fed ad libitum control animals, as were liver and white adipose tissue UCP2 and muscle UCP3 mRNA levels. In marked contrast, intracerebroventricular leptin administration was accompanied by the maintenance of high UCP1, UCP2, and UCP3 expression in all these tissues. Thus, despite analogies between leptin's effects and those of pair-feeding with regard to glucose handling, their respective underlying mechanisms differ. While leptin maintains or favors energy-dissipating mechanisms (UCP1, UCP2, and UCP3), the latter are markedly depressed in pair-fed rats. This effect of leptin may prevent subsequent excessive storage processes, thereby maintaining normal body homeostasis.  相似文献   

10.
Thiazolidinediones are potent antidiabetic compounds, which act by enhancing peripheral insulin sensitivity. They are also activators of the peroxisome proliferator activated receptor gamma in adipose tissue. Pioglitazone induces in vivo adipocyte differentiation in the obese Zucker fa/fa rat and hence the capacity of adipose tissue to utilize glucose. Nevertheless, muscles are the major site for insulin-mediated glucose disposal. The increase of muscle glucose utilization under thiazolidinedione treatment could be secondary to local adipose tissue differentiation. This possibility is supported by the fact that a thiazolidinedione-induced myoblast conversion into adipocytes has been described in vitro. To address this problem, we have studied the in vivo effect of a pioglitazone treatment on insulin-induced glucose utilization and the expression of genes exclusively expressed in mature adipocytes in three muscles differing by their fibre composition in Zucker (fa/fa) rats. Whereas pioglitazone treatment increased insulin-stimulated glucose utilization to the same extent in all muscle types, an adipocyte differentiation was only present in the oxidative muscle, the soleus. Soleus muscle was also the only one in which the presence of genes specific for adipose tissue could be detected before the pioglitazone treatment. There was no detectable expression of adipocyte specific genes in the extensor digitorum longus or in the epitrochlearis muscles before or after the drug treatment. We conclude that pioglitazone effects on muscle glucose metabolism cannot be due to a local adipocyte differentiation, and that the conversion of myoblasts into adipocytes under thiazolidinedione stimulation observed in vitro is, if it exists, a marginal phenomenon in vivo.  相似文献   

11.
Uncoupling protein-2 and -3 (UCP2 and UCP3) are mitochondrial proteins that show high sequence homology with the brown adipocyte-specific UCP1. UCP1 induces heat production by uncoupling respiration from ATP synthesis. UCP2 is widely expressed in human tissues, whereas UCP3 expression seems restricted to skeletal muscle, an important site of thermogenesis in humans. We have investigated the regulation of UCP2 and UCP3 gene expression in skeletal muscle and adipose tissue from lean and obese humans. UCP2 and -3 mRNA levels were not correlated with body mass index (BMI) in skeletal muscle, but a positive correlation (r = 0.55, P < 0.01, n = 22) was found between UCP2 mRNA level in adipose tissue and BMI. The effect of fasting was investigated in eight lean and six obese subjects maintained on a hypocaloric diet (1,045 kJ/d) for 5 d. Calorie restriction induced a similar 2-2.5-fold increase in UCP2 and -3 mRNA levels in lean and obese subjects. To study the effect of insulin on UCP gene expression, six lean and five obese subjects underwent a 3-h euglycemic hyperinsulinemic clamp. Insulin infusion did not modify UCP2 and -3 mRNA levels. In conclusion, the similar induction of gene expression observed during fasting in lean and obese subjects shows that there is no major alteration of UCP2 and -3 gene regulation in adipose tissue and skeletal muscle of obese subjects. The increase in UCP2 and -3 mRNA levels suggests a role for these proteins in the metabolic adaptation to fasting.  相似文献   

12.
Thiazolidinediones are potent antidiabetic compounds, in both animal and human models, which act by enhancing peripheral sensitivity to insulin. Thiazolidinediones are high-affinity ligands for peroxisome proliferator-activated receptor-gamma, a key factor for adipocyte differentiation, and they are efficient promoters of adipocyte differentiation in vitro. Thus, it could be questioned whether a thiazolidinedione therapy aimed at improving insulin sensitivity would promote the recruitment of new adipocytes in vivo. To address this problem, we have studied the in vivo effect of pioglitazone on glucose metabolism and gene expression in the adipose tissue of an animal model of obesity with insulin resistance, the obese Zucker (fa/fa) rat. Pioglitazone markedly improves insulin action in the obese Zucker (fa/fa) rat, but doubles its weight gain after 4 weeks of treatment. The drug induces a large increase of glucose utilization in adipose tissue, where it stimulates the expression of genes involved in lipid metabolism such as the insulin-responsive GLUT, fatty acid synthase, and phosphoenolpyruvate carboxykinase genes, but decreases the expression of the ob gene. These changes are related to both an enhanced adipocyte differentiation, as shown by the large increase in the number of small adipocytes in the retroperitoneal fat pad, and a direct effect of pioglitazone on specific gene expression (phosphoenolpyruvate carboxykinase and ob genes) in mature adipocytes.  相似文献   

13.
Attenuated regulatory thermogenesis in genetically obese (fa/fa) Zucker rats involves an impaired capacity to increase sympathetic drive to brown adipose tissue in response to dietary stimuli. Young, growing lean rats fed a low protein diet reduce energetic efficiency to compensate for elevated energy intake; however, it is not known if obese rats adapt similarly to chronic protein restriction by decreasing energetic efficiency and whether this would be accompanied by increased brown adipose tissue thermogenic capacity. Lean (Fa/Fa) and obese Zucker rats were either protein-restricted (protein 8% of total energy) or fed a control diet (21% protein) starting at age 5 wk. At 9 wk, oxygen consumption (VO2) was measured in response to an intubated meal of mixed macronutrient composition. Mass-adjusted food intake (i.e., food intake/body weight 0.67) was greater in protein-restricted than in control lean rats, but not different due to diet in obese rats. Mass-adjusted brown adipose tissue uncoupling protein levels were more than 100% greater in protein-restricted vs. control lean rats, but not different between protein-restricted and control obese rats. The uncoupling protein level was not significantly different in control lean vs. obese rats. Energetic efficiency was 40% lower in protein-restricted vs. control lean, but not different in obese rats; however, the efficiency of protein utilization was significantly greater in obese protein-restricted than in obese control rats. Meal-induced energy expenditure (VO2) did not differ significantly due to diet or genotype. In conclusion, protein restriction led to overfeeding in lean rats which appeared to enhance brown adipose tissue thermogenic capacity and decrease energetic efficiency. Protein efficiency increased to more than two times its original value in obese (fa/fa) rats, but otherwise no metabolic accommodation in the capacity for regulatory thermogenesis was observed in this genotype.  相似文献   

14.
Two distinct but related cGMP-inhibited cyclic nucleotide phosphodiesterase (cGI PDE) cDNAs were cloned from rat adipose tissue cDNA libraries. The open reading frame (3324 base pairs) of RcGIP1 encodes 1108 amino acids, including a hydrophobic membrane-associated domain in the NH2-terminal portion and, in the COOH-terminal portion, a putative catalytic domain conserved among all mammalian PDEs which is preceded by a putative regulatory domain that contains three consensus cAMP-dependent protein kinase phosphorylation sites and followed by a hydrophilic COOH-terminal domain. The carboxyl-terminal portion including the conserved domain was expressed as a glutathione S-transferase fusion protein and exhibited cAMP PDE activity which was inhibited by cilostamide, a specific cGI PDE inhibitor. RcGIP1 cDNA hybridizes strongly with RNA from isolated adipocytes, and its mRNA increases dramatically during differentiation of 3T3-L1 adipocytes. The deduced sequence of the second partial cDNA clone (RcGIP2 clone 53B) is highly homologous to the corresponding region of human cardiac cGI PDE cDNA. RcGIP2 cDNA hybridized strongly with rat cardiac tissue RNA and weakly if at all with RNA from rat adipocytes or 3T3-L1 fibroblasts or adipocytes. We suggest that RcGIP1 represents the hormone-sensitive, membrane-associated rat adipocyte cGI PDE and RcGIP2, a cGI PDE from vascular elements in rat adipose tissue.  相似文献   

15.
In the present study, we report the long-term metabolic consequences of feeding a milk substitute formula that is high in carbohydrate-derived calories during the suckling period. Male Sprague-Dawley rat pups were raised by gastrostomy on a high carbohydrate (HC) formula or a high fat (HF) formula (which mimicked rat milk composition in macronutrients) during the pre-weaning period (day 4 to 24). These rats were then weaned to a laboratory stock diet and subsequently challenged with a high sucrose diet to augment the development of obesity. The pups receiving the HC formula developed obesity in later life, even though there was no change in the body weight of this group compared to mother-fed (MF) controls or HF formula fed animals during the pre-weaning period. The HC rats were hyperinsulinemic and their growth rates were greater than MF rats starting at day 55. The lipogenic capacity of liver as well as adipose tissues (epididymal and omental) was higher in HC animals compared to MF control animals, as reflected by increases in two key lipogenic enzymes (fatty acid synthase and glucose-6-phosphate dehydrogenase) and in vitro synthesis of lipids. An analysis of adipose tissue morphology in adult rats showed an increase in cell size in epididymal adipose tissue of HC rats compared to the MF group. However, there was no significant difference in cell size in omental adipose tissue between the MF and HC rats. The HF group behaved similarly to the MF control group in growth pattern and measured metabolic parameters.  相似文献   

16.
17.
Insulin receptor (IR) gene expression at the mRNA level was investigated in hindlimb skeletal muscle, epididymal adipose tissue and in the liver of rats exposed to prolonged in vivo administration of deoxycorticosterone acetate (DOCA). Following treatment, plasma insulin levels were reduced while glucose levels increased compared to values in control rats. DOCA-treated animals showed an increase in blood pressure and a reduction in body weight. This treatment also induced hypokalemia and decreased plasma protein levels. Sodium levels were unaffected. Moreover, no differences in DNA and protein content or in the indicator of cell size (protein/DNA) were observed in the skeletal muscle or adipose tissue of animals. In contrast, there was a clear increase in the protein and DNA contents of the liver with no change in the indicator of cell size. Northern blot assays revealed 2 major IR mRNA species of approximately 9.5 and 7.5 Kb in the 3 tissues from control animals. DOCA treatment induced no change in the levels of either RNA species in skeletal muscle. However, a decrease of approximately 22% was detected in the levels of both species in adipose tissue whereas the liver showed an increase of 64%. These results provide the first evidence for an in vivo tissue-specific modulation of IR mRNA levels under experimental conditions of mineralocorticoid excess.  相似文献   

18.
BACKGROUND: In our previous studies, chronic treatment of rats with a new beta 3-adrenoceptor agonist, CL 316,243, retarded diet-induced obesity and promoted thermogenesis in young animals and reversed established diet-induced obesity in older animals that continued to eat a high fat diet. Reversal of obesity was associated with shrinking of enlarged white adipocytes but the number of mature white adipocytes, which had not been increased by the diet, was not reduced. Drug-treatment induced appearance of abundant brown adipocytes in white adipose tissue (WAT) depots as well as hypertrophy of brown adipose tissue (BAT) in both lean and diet-induced obese rats. OBJECTIVES: To find out whether the known hyperplasia of white adipocytes in the obese fa/fa rat could be reversed by CL 316,243-treatment and whether the grossly enlarged WAT depots of the obese fa/fa rat contain precursors to brown adipocytes. RESULTS: CL 316,243 infusion (1 mg/kg/d) reduced abdominal fat. The loss of fat was due to a decrease in white adipocyte size, with no loss of the markedly elevated number of adipocytes in the fa/fa rats. Resting metabolic rate increased by 40% in lean rats, by 70% in fa/fa rats. Food intake decreased in the hyperphagic fa/fa rats but did not change in lean rats, in both lean and fa/fa rats, a marked increase in protein content of retroperitoneal WAT was associated with appearance of abundant densely-stained brown adipocytes expressing uncoupling protein (UCP) but total number of cells (from DNA content) actually decreased. Hyperinsulinemia and hyperglycemia of fa/fa rats were reduced by treatment, indicating improved sensitivity to insulin. CONCLUSIONS: Abundant precursors to brown adipocytes are present in WAT depots of fa/fa rats and much of the exaggerated increase in resting metabolic rate induced by CL 316,243 occurs in these cells. This beta 3-adrenoceptor agonist is an effective anti-obesity and anti-diabetic agent in fa/fa rats. It does not bring about disappearance of mature white adipocytes but does bring about a remodelling of WAT, with a marked change in cell composition.  相似文献   

19.
The present study was addressed to quantify the steady-state mRNA levels for the alpha subunit of stimulatory (Gs) and inhibitory (Gi-1 and Gi-2) G-proteins in brown (interscapular) male rat adipose tissue (n = 6 rats). The quantification of specific mRNA, estimated using a solution hybridization RNAse protection assay, showed that the amounts of G alpha i-1, G alpha i-2 and G alpha s mRNA were 0.88 +/- 0.28 amol/microgram DNA, 76 +/- 4 amol/micrograms DNA and 460 +/- 16 amol/micrograms DNA, respectively. When the amounts of G alpha i-1 and G alpha i-2 and G alpha s mRNA in brown adipose tissue were compared with those in epididymal white adipose tissue (obtained from the same rats), G alpha i-1 and G alpha i-2 mRNA levels were very similar between brown and white adipose tissue, whereas the level of G alpha s mRNA was significantly higher in brown than in white fat tissue (P < 0.001). In conclusion, the present study shows the steady-state levels of mRNA for the alpha subunit of Gs, Gi-1 and Gi-2 in rat brown fat and suggests that the quantity of G alpha s mRNA is higher in brown than in white adipose tissue. Further studies are needed to explain the possible physiological importance of these findings.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号