首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
3.
4.
5.
Glycyrrhetic acid 3‐O‐mono‐β‐d ‐glucuronide (GAMG) is an important derivative of glycyrrhizin (GL) and has attracted considerable attention, especially in the food and pharmaceutical industries, due to its natural high sweetness and strong biological activities. The biotransformation process is becoming an efficient route for GAMG production with the advantages of mild reaction conditions, environmentally friendly process, and high production efficiency. Recent studies showed that several β‐glucuronidases (β‐GUS) are key GAMG‐producing enzymes, displaying a high potential to convert GL directly into the more valuable GAMG and providing new insights into the generation of high‐value compounds. This review provides details of the structural properties, health benefits, and potential applications of GAMG. The progress in the development of the biotransformation processes and fermentation strategies to improve the yield of GAMG is also discussed. This work further summarizes recent advances in the enzymatic synthesis of GAMG using β‐GUS with emphasis on the physicochemical and biological properties, molecular modifications, and enzymatic strategies to improve β‐GUS biocatalytic efficiencies. This information contributes to a better framework to explore production and application of bioactive GAMG.  相似文献   

6.
7.
8.
Polydatin is the main bioactive ingredient in many medicinal plants, such as Hu‐zhang (Polygonum cuspidatum), with many bioactivities. However, its poor aqueous solubility restricts its application in functional food. In this work, 6‐O‐α‐Maltosyl‐β‐cyclodextrin (Malt‐β‐CD), a new kind of β‐CD derivative was used to enhance the aqueous solubility and stability of polydatin by forming the inclusion complex. The phase solubility study showed that polydatin and Malt‐β‐CD could form the complex with the stoichiometric ratio of 1:1. The supermolecular structure of the polydatin/Malt‐β‐CD complex was characterized by ultraviolet–visible spectroscopy (UV), Fourier transform infrared spectroscopy (FT‐IR), X‐ray diffractometry (XRD), thermogravimetric/differential scanning calorimetry (TG/DSC), and proton nuclear magnetic resonance (1H‐NMR) spectroscopy. The changes of the characteristic spectral and thermal properties of polydatin suggested that polydatin could entrap inside the cavity of Malt‐β‐CD. Furthermore, to reasonably understand the complexation mode, the supermolecular structure of polydatin/Malt‐β‐CD inclusion complex was postulated by a molecular docking method based on Autodock 4.2.3. It was clearly observed that the ring B of polydatin oriented toward the narrow rim of Malt‐β‐CD with ring A and glucosyl group practically exposed to the wide rim by hydrogen bonding, which was in a good agreement with the spectral data.  相似文献   

9.
10.
11.
12.
13.
14.
15.
Rats were meal‐fed a semi‐synthetic diet, with or without quercetin 3‐O‐glucoside (Q3G; 100 mg per meal) and groups of three were killed either fasting, or at 2, 5 and 24 post‐feeding. Flavonoids and their metabolites in the diet, stomach contents, small intestinal lumen and mucosa, caecal contents and plasma were determined by LC/MS. Q3G was not hydrolysed in the stomach, but deglycosylation and further metabolism occurred in the small intestinal mucosa. At least 17 flavonoid glucuronides were identified in the lumen and mucosa, with evidence of time‐dependent changes such as de‐ and re‐glucuronidation. Quercetin mono‐sulphate was also detected in the small intestinal contents. Metabolites were still present in tissue and plasma 24 h after feeding. There was also evidence of complex microbial processing of Q3G in the caecal lumen with the appearance of at least one methylquercetin‐mono‐glucuronide, mono‐sulphate unique to this site in the gut, together with phenolic acid derivatives. Intestinal flavonoid metabolism is thus a very complex process in mammals, involving both enterocytes and bacteria. Copyright © 2004 Society of Chemical Industry  相似文献   

16.
The binding interaction between‐epigallocatechin‐3‐gallate (EGCG) and bovine β‐lactoglobulin (βLG) was thoroughly studied by fluorescence, circular dichroism (CD) and protein–ligand docking. Fluorescence data revealed that the fluorescence quenching of βLG by EGCG was the result of the formation of a complex of βLG–EGCG. The binding constants and thermodynamic parameters at two different temperatures and the binding force were determined. The binding interaction between EGCG and βLG was mainly hydrophobic and the complex was stabilised by hydrogen bonding. The results suggested that βLG in complex with EGCG changes its native conformation. Furthermore, preheat treatment (90 °C, 120 °C) and emulsifier (sucrose fatty acid ester) all boosted the binding constants (Ka) and the binding site values (n) of the βLG‐EGCG complex. This study provided important insight into the mechanism of binding interactions of green tea flavonoids with milk protein.  相似文献   

17.
Epigallocatechin‐3‐gallate (EGCG) is the major and most potent representative in green tea, which has been proved to modulate myocardial contractility. Whether EGCG has some negative effects on cardiac function is not known. In the present study, we investigated the effects of EGCG at different doses on cardiac contraction and explored whether β2‐adrenoceptor (β2AR) was involved in EGCG‐induced cardiac effects. Isolated rat hearts were mounted on the Langendorff system and perfused with different concentrations of EGCG in low or normal calcium Krebs–Henseleit (KH) buffer. The contraction of hearts was measured. Ventricular myocytes were cultured with EGCG and isoprenaline (ISO, 10?7 M) for 12 h. ICI118,551 (55 nM) was used to inhibit β2AR. Cardiomyocyte shortening, viability, and responsiveness to ISO (10?9 M) were measured. EGCG dose dependently enhanced contractility of perfused heart in low calcium KH buffer. In the normal calcium KH buffer, EGCG at low dose (20 μM) increased heart contraction, while at high dose (50 μM), it increased the incidences of arrhythmia and diastolic dysfunction. In isolated ventricular myocytes, EGCG at the concentration of 0.001 to 1.0 μΜ did not affect their contraction. However, the responsiveness to ISO and the survival of myocytes were increased by EGCG (0.01 μM). The increased responsiveness was partially abolished by ICI118,551. The data obtained in this study demonstrated that EGCG at low dose conferred cardioprotection, yet at high dose increased the incidences of arrhythmia and diastolic dysfunction. β2AR was involved in EGCG‐induced cardiac effects.  相似文献   

18.
19.
Soy sauce, a dark‐colored seasoning, is added to enhance the sensory properties of foods. Soy sauce can be consumed as a condiment or added during the preparation of food. There are 3 types of soy sauce: fermented, acid‐hydrolyzed vegetable protein (acid‐ HVP), and mixtures of these. 3‐Chloropropane‐1,2‐diol (3‐MCPD) is a heat‐produced contaminants formed during the preparation of soy sauce and was found to be a by‐product of acid‐HVP‐produced soy sauce in 1978. 3‐MCPD has been reported to be carcinogenic, nephrotoxic, and reproductively toxic in laboratory animal testing and has been registered as a chemosterilant for rodent control. 3‐MCPD is classified as a possible carcinogenic compound, and the maximum tolerated limit in food has been established at both national and international levels. The purpose of this review is to provide an overview on the detection of 3‐MCPD in soy sauce, its toxic effects, and the potential methods to reduce its concentration, especially during the production of acid‐HVP soy sauce. The methods of quantification are also critically reviewed with a focus on efficiency, suitability, and challenges encountered in analysis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号