首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this article, a new class of dual‐/tri‐band and ultra‐wideband (UWB) bandpass filters (BPFs) using novel multi‐mode resonators are proposed. The classical even‐/odd‐mode method is applied to analyze the resonant characteristics of the proposed resonators, which exhibit controllable resonant modes with different dimension parameters under the same configuration. According to the analysis, three resonators with quad‐/penta‐/sext‐mode resonant characteristics are obtained by choosing the specific dimension parameters. Then, the quad‐mode resonator is used to design a dual‐wideband BPF centred at 2.39/5.14 GHz with 3‐dB fractional bandwidths (FBWs) of 36.9%/18.9%, and the penta‐mode resonator is utilized to design an UWB BPF with 3‐dB FBW of 102.2%, whereas the sext‐mode resonator is applied to design a tri‐band BPF with centre frequencies of 2.09/3.52/5.46 GHz and 3‐dB FBWs of 11.3%/20%/12.1%. All these three filters are fabricated and measured, and the measured results are in good agreement with the simulated ones.  相似文献   

2.
In this article, compact quad‐band band‐pass filters are realized by using stepped‐impedance coupled‐line quad‐mode resonators (SICLQMRs). The compactness of the quad‐mode resonator relies in its folded structure without extra space between the parallel lines. Unlike stepped‐impedance resonators, SICLQMRs provide more design freedoms for controlling the four resonating frequencies since the even‐ and odd‐mode equivalents can be separately assigned with characteristic impedances. Internal and external couplings are also parallel couplings, resulting in very compact dimensions of the filters. Simulated and measured S parameters are compared with good agreement, demonstrating the feasibility of the design.  相似文献   

3.
A balanced second‐order dual‐band bandpass filter (BPF) with independently controllable center frequencies and bandwidths based on coupled stepped‐impedance resonators (SIRs) is designed in this article. To obtain a dual‐band differential‐mode (DM) response, two pairs of SIRs with different resonant frequencies are employed in the design. The bandwidths of the two DM passbands can be independently tuned by adjusting the coupling gaps and coupling lengths of the corresponding resonators. In addition, three transmission zeros are realized to enhance the selectivity of the DM passbands. The microstrip‐slotline transition structure is utilized to achieve a wideband common‐mode (CM) suppression. Moreover, the DM responses are independent of the CM ones, which significantly simplify the design procedure. Finally, a balanced dual‐band BPF is designed to validate the design method and a good agreement between the simulated and measured results is observed.  相似文献   

4.
This letter presents a novel miniaturized differential dual‐band bandpass filter (BPF) using a single quad‐mode metal‐loaded dielectric resonator (DR). The differential dual‐band BPF is designed in a single‐cavity configuration with one quad‐mode DR and four feeding probes, featuring compact size. The rectangular DR is directly mounted on the bottom of the metal cavity and covered by a metal plate on the top surface. It allows two pairs of orthogonal modes (LSE10 and LSM10), which can be differentially excited and coupled by introducing proper perturbation for constructing dual‐band differential‐mode frequency response. To validate the proposed idea, a compact differential BPF with good performance using a quad‐mode DR cavity is designed, fabricated, and measured. The simulated and measured results with good agreement are presented.  相似文献   

5.
In this study, a novel high selective UWB band pass filter (BPF) with dual notch band is presented. UWB BPF is realized using stub‐loaded multiple‐mode resonator (MMR). The MMR is constructed by loading a quintuple mode open stub at the centre in an asymmetric tri‐section stepped impedance resonator (ATSSIR). Five modes, including two odd modes and three even modes, placed within UWB band. Two transmission zeros generated by the fractal stub improve the passband selectivity greatly. Two half wavelength long fractal Hilbert resonators are embedded near I/O line to achieve notch bands at 5.1 and 5.9 GHz. Aperture‐backed interdigital coupled‐lines are implemented to improve the coupling. The proposed prototype is fabricated and tested. The measured insertion loss is observed to be within 1.5 dB over the passband. By virtue of two transmission zeros (TZs), on either side of the passband, at 5.1 and 5.9 GHz, respectively, the passband selectivity is achieved with measured roll‐off factor at around 34 dB/octave. The out‐of‐band rejection of the filter is greater than 22 dB up to 18 GHz. The simulated results are in good agreement with the measured responses.  相似文献   

6.
This article presents a dual‐plane structure high selectivity tri‐band bandpass filter (BPF) which consists of a pair of T‐shaped microstrip feed lines with capacitive source‐load coupling as well as spur lines embedded, and three resonators, i.e., a dual‐mode stub‐loaded stepped impedance resonator and two nested dual‐mode defected ground structure resonators. Using the intrinsic characteristics of the resonators and feed lines, nine transmission zeros near the passband edges and in the stopband can be generated to achieve high selectivity. An experimental tri‐band BPF located at 2.4/5.7 GHz [wireless local area networks (WLAN) application] and 3.5 GHz [worldwide interoperability for microwave access (WiMAX) application] has been simulated and fabricated. Good agreement between the simulated and measured results validates the design approach. © 2012 Wiley Periodicals, Inc. Int J RF and Microwave CAE, 2013.  相似文献   

7.
We propose the improved configurations with dual‐mode dual‐square‐loop resonators (DMDSLR) for quad‐band bandpass filter (BPF) design. The modified DMDSLR filter employs two sets of the loops. The square loop is designed to operate at the first and third resonated frequencies (2.4/5.22 GHz) and the G‐shaped loop is employed at the second and fourth resonated frequencies (3.59/6.6 GHz). The resonant frequency equations of DMDSLR are introduced for simply designing quad‐band BPF. Resonant frequencies can be controlled by tuning the perimeter ratio of the square loops. A systematic design procedure with the design map is applied for accuracy design. To obtain lower insertion loss, higher out‐of‐band rejection level and wider bandwidth of quad‐band, the miniaturized DMDSLR with meander‐line technique is proposed. The proposed filters are successfully simulated and measured showing frequency responses and current distributions. It can be applied to WLAN and WiMAX quad‐band systems. © 2013 Wiley Periodicals, Inc. Int J RF and Microwave CAE 24:332–340, 2014.  相似文献   

8.
In this article, a balanced tri‐band bandpass filter (BPF) with high selectivity and controllable bandwidths is proposed. Two differential‐mode (DM) passbands are formed by applying stepped impedance resonators into the design. Uniform impedance resonators are introduced to realize the third DM passband. Moreover, frequencies and bandwidths of DM passbands can be independently controlled by the lengths of resonators and the gaps between them. In addition, good DM transmission can be realized while high common‐mode suppression is achieved intrinsically without affecting the DM parts, thereby simplifying the design procedure significantly. In order to validate the practicability, a balanced tri‐band BPF operating at 2.45 GHz, 3.5 GHz, and 4.45 GHz is fabricated and designed. A good agreement between the simulated and measured results is observed.  相似文献   

9.
In this article, a compact dual‐band bandpass filter (BPF) is developed using a hybrid resonant structure, which consists of a microstrip stub‐loaded dual‐mode resonator and a slotline stub‐loaded dual‐mode resonator. These two resonators, both having two controllable resonant modes and one transmission zero (TZ), are analyzed and used to construct two desired passbands of a dual‐band BPF. Multiple TZs are generated by introducing a source‐load coupling, thus improving the selectivity of the passbands. Then, the dual‐band BPF is reshaped to configure a compact diplexer. The inherent TZs of the two proposed resonators are designed to improve the frequency property and port isolation of the diplexer. Finally, a dual‐band BPF and a diplexer with the lower and upper passbands centered at 2.45 and 3.45 GHz, respectively, are designed, fabricated, and measured to verify the proposed structure and method.  相似文献   

10.
In this article, a double‐T‐shaped stub centrally loaded uniform impedance resonator (UIR) is introduced and its resonant characteristics are well clarified, which provided a simple approach for triple‐mode wideband bandpass filter (BPF) design. The double‐T‐shaped stub consists of a T‐shaped stub at the center of UIR and two shunt uniform‐impedance stubs at the T‐shaped stub. Furthermore, loading technique for zero‐voltage point is employed to guide design procedure from UIR to the proposed resonator. The resonant frequencies of the first three modes for the resonator can be free to adjust by the length of the UIR and the two kinds of stub. Finally, a compact wideband BPF is designed, fabricated, and measured. The measured results are in good agreement with the full‐wave simulation results. The realized wideband filter exhibits a 3 dB fractional bandwidth of 69.1% with good in‐band filtering performance, wide stopband, and sharp out‐of‐band rejection skirt.  相似文献   

11.
A balanced dual‐band bandpass filter (BPF) with independently tunable differential‐mode (DM) frequencies is proposed in this letter. The proposed BPF is composed of complementary split‐ring resonators (CSRRs) etched on the ground and varactors loaded on the resonators. A balanced stepped‐impedance microstrip‐slotline transition structure is introduced to transfer the DM signals successfully and block the common‐mode (CM) signals transmission. Good DM transmission and CM suppression can be achieved. Moreover, by changing the reverse bias voltages of the varactors loaded on coupling CSRRs, two DM resonant frequencies of the proposed balanced BPF can be tuned independently. To verify the feasibility of the design method, a balanced BPF with DM frequency ranging from 0.80 GHz to 1.12 GHz and 1.55 GHz to 2.05 GHz is fabricated and measured. Good agreement between the simulation and measurement results demonstrate the validity of the design.  相似文献   

12.
This article presents a novel multi‐mode microstrip resonator. Using the even‐odd‐mode method, its resonance characteristics are analyzed and the design graphs are given. Each mode equivalent circuit is a λ/4 stepped impedance resonator (SIR), so the proposed resonator has a compact size and the higher harmonics can be tuned in a wide range. Stub–stub coupling is introduced to split two identical modes and produce two transmission zeros (TZs). Then a tri‐band filter operating at 1.5, 2.4, and 3.8 GHz is designed using the proposed resonator. The three center frequencies and bandwidths can be independently controlled. By tuning the impedance and length ratios of the stubs, wide upper stopband is achieved. Finally, the designed filter is fabricated and measured, and the measured results agree well with the simulated ones. © 2016 Wiley Periodicals, Inc. Int J RF and Microwave CAE 26:559–564, 2016.  相似文献   

13.
The miniaturized dual‐mode tri‐band band‐pass filters (BPF) using crossed‐island patch resonator is proposed in this article. The BPF is mainly formed by a square patch resonator in which a crossed‐island configuration is embedded in the patch. The patch size reduction with 74.4% is achieved. By the perturbation and the alternative inter‐digital coupling, the tri‐band responses are obtained. The proposed filter covers the required bandwidths for WLAN band (2.26–3.11 GHz and 5.02–6.0 GHz) and X‐band (7.58–8.41 GHz) applications. Five transmission zeros are placed between three pass‐bands and resulted in a good isolation. © 2013 Wiley Periodicals, Inc. Int J RF and Microwave CAE 24:457–463, 2014.  相似文献   

14.
This article presents two novel resonators, that is, frequency selecting coupling structure loaded stepped‐impedance resonator (FSCSLSIR) and π‐section loaded FSCSLSIR. The resonator behaviors and guidelines are given to design FSCSLSIR dual‐band bandpass filter (BPF) and π‐section loaded FSCSLSIR triband BPF. The proposed dual‐ and triband BPF have very compact sizes of 0.13 λgd × 0.06 λgd and 0.115 λgt × 0.074 λgt, respectively. Moreover, good return loss, low insertion loss, and high band‐to‐band isolation can be observed, and the proposed FSCSLSIR dual‐band BPF has an ultrawide stopband from 5.79 to 36 GHz. The experimental results are in good agreement with the simulations. © 2014 Wiley Periodicals, Inc. Int J RF and Microwave CAE 25:427–435, 2015.  相似文献   

15.
A stepped‐impedance‐stub loaded stepped‐impedance resonator (SISLSIR) is proposed to design a dual‐band bandpass filter. The even‐ and odd‐mode frequencies and the coupling strength of the proposed resonators can be independently designed and adjusted. A dual‐feedline structure is used to meet the required external couplings of the 2 passbands. Thus, both the center frequencies and the bandwidths of the 2 passbands can be independently controlled. A 6‐pole dual‐band filter with the passbands of 3300~3600 MHz and 4800~5000 MHz is successfully designed using the proposed method and fabricated with YBCO/MgO high‐temperature superconducting (HTS) wafer. The measured results of the filter exhibit high performance and match well with the simulations. The measured insertion losses are less than 0.2/0.3 dB, and the return losses are greater than 15/14 dB for the lower/upper passbands, respectively. The out‐of‐band rejection is greater than 68 dB up to 12 GHz.  相似文献   

16.
Two dual‐band band pass filters (BPF) using stub‐loaded open‐loop (SLOL) resonator are presented in this article. A novel coupling tuning method by changing the relative coupling position of the resonators is proposed to control the bandwidth of each passband in a wide range. Transmission zeros are created to improve the selectivity by source‐load coupling. Because of the large ratio of two bandwidths, a novel dual‐band matching method is proposed to match the different load impedances at two passband frequencies to the same source impedance. Hence, relax the fabrication requirement of gap. The proposed dual‐band band pass filter is designed and fabricated. The measured 3 dB fractional bandwidths (FBWs) of two 2.45/5.25 GHz dual‐band BPFs are 6.5%/14.5% and 9.8%/5.5%, respectively. The results are in good agreement with the simulation. © 2013 Wiley Periodicals, Inc. Int J RF and Microwave CAE 24:367–374, 2014.  相似文献   

17.
A novel dual‐mode optimized patch capacitor loaded T‐type resonator is proposed for the design of a dual‐band filter (DBF). The resonator has its lowest even‐ and odd‐mode at the two expected passband frequencies and the first spurious mode far away from the passbands. For tuning of the two sets of coupling strengths for both passbands, open/shorted secondary coupling structures are introduced as a fine‐tuning coupling structure to increase/decrease the primary coupling strength. A four‐pole DBF with passbands centered at 2450 and 3500 MHz, respectively, is proposed and fabricated using the HTS material. The measured results of the filter indicate superior performance and good fitting with the simulation results. The return losses of both passbands and the insertion losses obtained by measurements are greater than 14 dB and less than 0.3 dB, respectively. The stopband rejection exceeds 50 dB up to 8.0 GHz.  相似文献   

18.
Four‐stage stepped‐impedance resonator (FSSIR) is proposed and its resonant characteristics are analyzed in detail. The formulas of the first four resonances are deduced and the optimization techniques are presented on the basis of the impedance ratios. A quad‐band bandpass filter with third‐order filtering response in each passband is synthesized and designed as a demonstration of the application of the proposed FSSIR. Thanks to the cross‐coupling topology and skew‐symmetrical feeding configuration, multiple transmission zeros have been generated out of the passbands. Additionally, the frequency and the couplings of each passband can be flexibly controlled, respectively.  相似文献   

19.
New multi‐standard wide band filters with compact sizes are designed for wireless communication devices. The proposed structures realize dual‐wideband and quad‐wideband characteristics by using a new skew‐symmetrical coupled pair of asymmetric stepped impedance resonators, combined with other structures. The first and second dual‐wideband filters realize fractional bandwidths (FBW) of 43.2%/31.9% at the central frequencies (CF) of 1.875/1.63 GHz, and second bandwidths of 580 MHz/1.75 GHz at CF of 5.52/4.46 GHz, respectively. The proposed quad‐band filter realizes its first/second/third/fourth pass bands at CF 2.13/5.25/7.685/9.31 GHz with FBW of 46.0%/11.4%/4.6% and 5.4%, respectively. The wide pass bands are attributed to the mutual coupling of the modified ASIR resonators and their bandwidths are controllable by tuning relative parameters while the wide stop band performance is optimized by the novel interdigital cross coupled line structure and parallel uncoupled microstrip line structure. Moreover, the quad band is generated by introducing the novel defected rectangle structure. These multi‐standard filters are simulated, fabricated and measured, and measured results agree well with both simulated results and theory predictions. The good in‐band and out‐of‐band performances, the miniaturized sizes and simple structures of the proposed filters make them very promising for applications in future multi‐standard wireless communication.  相似文献   

20.
In this paper, a balanced dual‐band bandpass filter (BPF) with high selectivity and low insertion loss performance is presented by employing stub loaded resonators (SLRs) and stepped impedance resonators (SIRs) into balanced microstrip‐slotline (MS) transition structures. The balanced MS transition structures can achieve a wideband common‐mode (CM) suppression which is independent of the differential‐mode (DM) response, significantly simplifying the design procedure. Six varactors are loaded into the resonators to achieve the electrical reconfiguration. The proposed balanced dual‐band BPF can realize quasi‐independently tunable center frequencies and bandwidths. A tuning center frequency from 2.48 to 2.85 GHz and a fractional bandwidth (20.16%‐7.02%) with more than 15 dB return loss and less than 2.36 dB insertion loss are achieved in the first passband. The second passband can realize a tuning center frequency from 3.6 to 3.95 GHz with more than 12 dB return loss and less than 2.38 dB insertion loss. A good agreement between the simulated and measured results is observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号